OVERVIEW

VL53L0X Distance Sensor is a Time-of-Flight (ToF) ranging module based on the VL53L0X from ST, with accurate ranging up to 2m, it is controlled through I2C interface, and pretty low power consumption.

The VL53L0X is a ToF sensor which embeds the ST’s second generation FlightSense patented technology.

Unlike conventional ranging sensors, the VL53L0X is able to provide accurate distance measurement whatever the target color and reflectance, achieves better anti-interference capability.

FEATURES

- I2C communication interface, control the module on/off via IO pins
- Onboard voltage translator, compatible with 3.3V/5V operating voltage
- Comes with development resources and manual (examples for Raspberry Pi/Arduino/STM32)

SPECIFICATIONS

- Operating voltage: 3.3V/5V
- Dimension: 20mm × 24mm
- Mounting holes size: 2.0mm
- Ranging distance: 30 ~ 2000mm
- Ranging accuracy: ±5% (high speed mode), ±3% (high accuracy mode)
- Ranging time (min): 20ms (high speed mode), 200ms (high accuracy mode)
- Field of view: 25°
- Laser wavelength: 940nm
- Operating temperature: -20 ~ 70°C

PINOUTS

VCC: 3.3V/5V power input
GND: ground
SDA: I2C data pin
SCL: I2C clock pin
SHUT: shutdown control, connects to IO pin
INT: interrupt output, connects to IO pin
VL53L0X Time-of-Flight (ToF) ranging sensor is ST’s second generation laser-ranging module housed in the smallest package on the market today. The VL53L0X is a fully integrated miniature module which integrates embedded infrared ranging sensor, VCSEL (Vertical Cavity Surface-Emitting Laser), couples with internal physical infrared filters and a leading-edge SPAD array (Single Photon Avalanche Diodes). The VL53L0x embeds ST’s second generation FightSense™ patented technology, has longer ranging distance, higher rate and accuracy, opening the door to various new application.

VL53L0X can measure absolute distances up to 2m t whatever the target reflectances unlike conventional technologies. It’s ultra-Low designs supports for wireless and IOT application.

Features:

- Fully integrated miniature module
 - 940 nm laser VCSEL
 - VCSEL driver
 - Ranging sensor with advanced embedded micro controller
 - 4.4 x 2.4 x 1.0 mm

- Fast, accurate distance ranging
 - Measures absolute range up to 2 m
Reported range is independent of the target reflectance

Advanced embedded optical cross-talk compensation to simplify cover glass selection

- Eye safe
 - Class 1 laser device compliant with latest standard IEC 60825-1:2014 - 3rd edition

- Easy integration
 - Single reflowable component
 - No additional optics
 - Single power supply
 - I2C interface for device control and data transfer
 - Xshutdown (reset) and interrupt GPIO
 - Programmable I2C address

Pictures:

For more details, please read the datasheet
USING WITH DEMO CODES

WORKING WITH RASPBERRY PI

The demo code is based on open-source project on github:

https://github.com/cassou/VL53L0X_rasp

HARDWARE CONNECTION

The connection is based on Raspberry Pi

<table>
<thead>
<tr>
<th>VL53L0X Distance Sensor</th>
<th>Raspberry Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>3.3V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>SDA</td>
<td>SDA.1</td>
</tr>
<tr>
<td>SCL</td>
<td>SCL.1</td>
</tr>
</tbody>
</table>

COMPILING AND RUNNING
1. Download demo code from Wiki

 VL53L0X Distance Sensor
 More

 Resources
 - User Manual
 - Schematic
 - Demo Code
 - Software
 - VL53L0X Datasheets
 - VL53L0X API

2. Unzip and copy the code of Raspberry Pi to your Pi (Recommend put on /home/pi/)

3. Enter the path of the demo code on Terminal and run this compiling command

 sudo make clean && sudo make && sudo make examples

4. After compiling, enter bin folder and list the files as below:
5. Execute command to run the code `vl53l0x_SingleRanging_Long_Range_Example`.

![Image 1](image1.png)

6. Execute the command to run code `vl53l0x_ContinuousRanging_Example`.

![Image 2](image2.png)
WORKING WITH ARDUINO

HARDWARE CONNECTION

The connection is based on Waveshare UNO PLUS

<table>
<thead>
<tr>
<th>VL53L0X Distance Sensor</th>
<th>Arduino</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>3.3V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>SDA</td>
<td>SDA</td>
</tr>
<tr>
<td>SCL</td>
<td>SCL</td>
</tr>
</tbody>
</table>

RUNING

Copy the VL53L0X-Arduino-Library folder which is under Arduino demo code directory to Arduino IDE’s Libraries directory which is under the installation directory
of your IDE. Then Open Arduino IDE, and choose File->Examples->

VL53L0X-Arduino-Library

Compiling and run 5 examples for test as below:
1. **high_accuracy_ranging**: High accuracy ranging which will cost more times

![Image](image1.png)

2. **high_speed_ranging**: Fast ranging, cost less time and low accuracy

![Image](image2.png)

3. **long_distance_ranging**: Long distance ranging, with bigger measure rang

![Image](image3.png)
4. **single_ranging**: Single ranging mode

![Image showing single ranging mode]

5. **continuous_ranging**: Continuous ranging mode

![Image showing continuous ranging mode]

For more information about different ranging modes, please read VL53L0X API
WORKING WITH STM32

HARDWARE CONNECTION

This connection is based on XNUCLEO-F411RE/NUCLEO-F401RE:

<table>
<thead>
<tr>
<th>VL53L0X Distance Sensor</th>
<th>XNUCLEO-F411RE/NUCLEO-F401RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>3.3V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>SDA</td>
<td>SDA</td>
</tr>
<tr>
<td>SCL</td>
<td>SCL</td>
</tr>
</tbody>
</table>

RUNNING VL53L0X_GUI

1. Connecting sensor to NUCLEO-F401RE board as Hardware connection above

2. Install ST’s VL53L0X_GUI software and run it. The software will write the test firmware to NUCLEO board automatically. (Note: for this example, you need to
use the NUCLEO-F401RE development board, and it is not an open-source code

3. Switch to Low-Power Autonomous, Distance Mode choose Short, then click Start.

Distance curve will be showed on the software

For more information about STM32 examples VL53L0X, please visit ST website.