

Product Specification

Model NO.: 7.5inch HD e-Paper

Product VER:A1

Version	Content	Date	Producer
A0	New release		
A1	Increasing the Brand of components		

CONTENTS

1 General Description	4
2 Features	4
3 Application	4
4 Mechanical Specification	4
5 Mechanical Drawing of EPD module	5
6 Input/Output Terminals	6
7 MCU Interface.	7
7.1 MCU Interface Selection	7
7.2 MCU Serial Peripheral Interface (4-wire SPI)	7
7.3 MCU Serial Peripheral Interface (3-wire SPI)	8
8 COMMAND TABLE.	9
9 Reference Circuit.	
10 Absolute Maximum Rating	
11 DC Characteristics	
12 Serial Peripheral Interface Timing	
13 Power Consumption	
14 Typical Operating Sequence	
14.1 Normal Operation Flow	
14.2 Reference program code	
15 Optical Characteristics	
15.1 Specifications	
15.2 Definition Of Contrast Ratio	
16 Handing Safety And Environment Requirements	
17 Reliability Test	
18 Block Diagram	
20 Point And Line Standard	

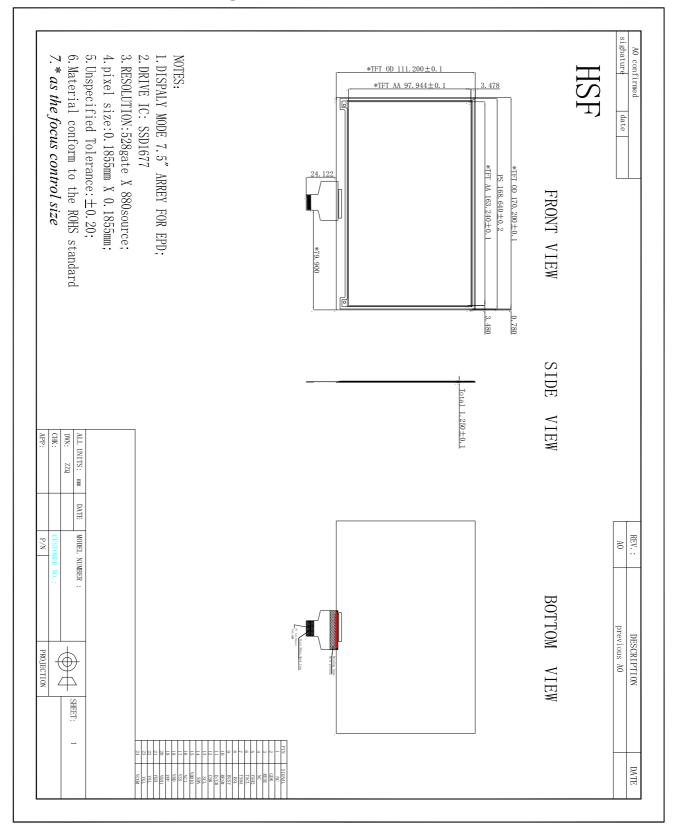
1. General Description

This is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 7.5" active area contains 528×880 pixels, and has 1-bit B/W full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC. SRAM.LUT, VCOM and border are supplied with each panel.

2. Features

- 528×880 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/built-in temperature sensor

3. Application


Electronic Shelf Label System

4. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	7.5	Inch	
Display Resolution	528(H)×880(V)	Pixel	Dpi:137
Active Area	163.24(H)×97.94(V)	mm	
Pixel Pitch	0.1855×0.1855	mm	
Pixel Configuration	Rectangle		
Outline Dimension	170.2(H)×111.2 (V) ×1.25(D)	mm	
Weight	31±0.2	g	

5. Mechanical Drawing of EPD module

6. Input/Output Terminals

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES #	Reset	Note 6-3
11	D/C #	Data /Command control pin	Note 6-2
12	CS #	Chip Select input pin	Note 6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH,

the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 6-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or

- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

7. MCU Interface

7.1 MCU interface selection

Display can support 4-wire or 3-wire serial peripheral MCU interface, which is pin selectable by BS1 pin. The interface pin assignment for different MCU interfaces is shown in Table 7-1.

Note

- (1) L is connected to VSS
- (2) H is connected to VDDIO

Table 7-1: Interface pin assignment for different MCU interfaces

				Pin Name			
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDI	SDO
4-wire serial peripheral interface (SPI)	L	Required	Required	Required	SCL	SDI	SDO
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	Required	Required	L	SCL	SDI	SDO

7.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data input SDI, D/C# and CS#. The control pins status in

4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure in 4-wire SPI is shown in

Figure 7-1..

Table 7-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDI pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	\uparrow	Data bit	Н	L

Note:

(1) L is connected to VSS and H is connected to VDDIO

(2) \uparrow stands for rising edge of signal

(3) SDI is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

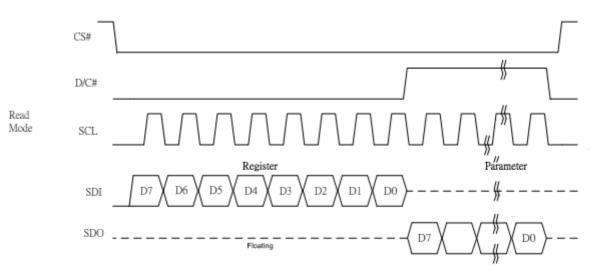
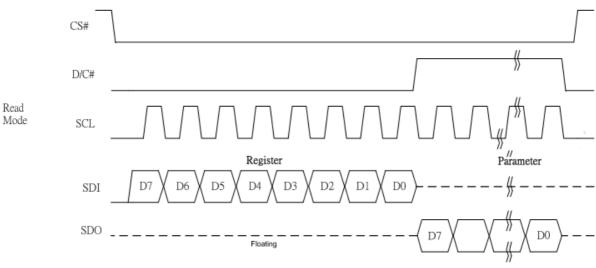
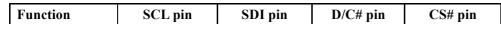


Figure 7-1: Read procedure in 4-wire SPI mode

In the read operation, after CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data output SDO bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.




Figure 7-2: Read procedure in 4-wire SPI mode

7.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data input SDI, and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 7-3 shows the write procedure in 3-wire SPI

Table 7-3	: Control	pins	status	of 3-v	wire SF	PI
-----------	-----------	------	--------	--------	---------	----

Write command	↑	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) \uparrow stands for rising edge of signal

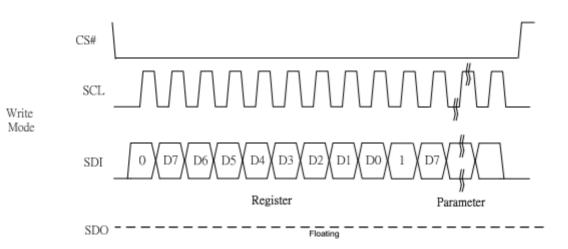


Figure 7-3: Write procedure in 3-wire SPI mode

In the read operation, serial data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data output SDO bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

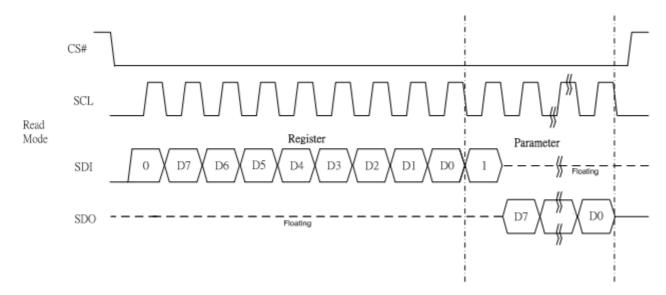


Figure 7-4: Read procedure in 3-wire SPI mode

8. COMMAND TABLE

Comma	nd Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setting A[9:0]= 2A7h [POF	1. 680 MUX	
0	1		A7	A6	A5	A4	A3	A2	A1	A0		MUX Gate lines set] + 1).
0	1		0	0	0	0	0	0 B2	A9 B1	A8 B0		B[2:0] = 000 [POR] Gate scanning seque		tion
												B[2]: GD Selects the 1st output GD=0 [POR], G0 is the 1st gate out output sequence is G GD=1, G1 is the 1st gate out output sequence is G B[1]: SM Change scanning or SM=0 [POR], G0, G1, G2, G36 interlaced) SM=1, G0, G2, G4G678 B[0]: TB TB = 0 [POR], scan TB = 1, scan from G	tt Gate tput channel, i0,G1, G2, G3 tput channel, i1, G0, G3, G3 der of gate dri 79 (left and rig , G1, G3,C from G0 to G	gate gate 2, ver. ght gate
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage Control	Set Gate driving vol A[4:0] = 00h [POR] VGH setting from 1 A[4:0] VGH 00h 20 07h 12 08h 12.5 09h 13 0Ah 13.5 0Bh 14 0Ch 14.5 0Dh 15 0Eh 15.5 0Fh 16	-	VGH 16.5 17 17.5 18 18.5 19 19.5 20 NA

Comma	nd Table																		
R/W#	D/C#	Hex	D 7	D6	D5	D4	D 3	D2	D1	D0	Comma	nd	Descriptio	'n					
0	0	04	0	0	0	0	0	1	0	0		Driving voltage	Set Source	e driving vo	oltage				
0	1		A 7	A6	A5	A4	A 3	A2	A1	A2	Control		A[7:0] = 4 B[7:0] = A	1h [POR],	VSH1 at				
0	1		B7	B6	B5	B4	B3	B2	B1	B0			C[7:0] = 3	2h [POR],	VSL at -1	5V			
0	1		C7	C6	C5	C4	C3	C2	C1	C0									
B[7] = 1 VSH2 v 8.8V		etting from 2	2.4V to)				A[7]/B[7] VSH1/VSI to 17V	= 0, H2 voltage s	setting fi	rom 9V		C[7] = 0, VSL setting from -9V to -17V						
A/B	[7:0] V	VSH1/VSH	2 A	/B[7:0]	VSI	H1/VSF	12	A/B[7:0]	VSH1/V	VSH2	A/B[7:0]	VSH1/VSH2		C[7:0]	VSL				
8Eh	2	2.4	Α	Fh	5.7			23h	9		3Ch	14		1Ah	-9				
8Fh	2	2.5	В	0h	5.8			24h	9.2		3Dh	14.2		1Ch	-9.5				
90h	2	2.6	В	1h	5.9			25h	9.4		3Eh	14.4		1Eh	-10				
91h	2	2.7	В	2h	6			26h	9.6		3Fh	14.6		20h	-10.5				

92h	2.8		B3		6.1] [27h	9.8		40h	14.8 22h -11
93h	2.9		B4		6.2			28h	10		41h	15 24h -11.5
94h	3		В5	h	6.3			29h	10.		42h	15.2 26h -12
95h	3.1		B6	h	6.4			2Ah	10.		43h	15.4 28h -12.5
96h	3.2		B7		6.5			2Bh	10.		44h	15.6 2Ah -13
97h	3.3		B8	h	6.6			2Ch	10.		45h	15.8 2Ch -13.5
98h	3.4		B9	h	6.7			2Dh	11		46h	16 2Eh -14
99h	3.5		BA	٨h	6.8			2Eh	11.		47h	16.2 30h -14.5
9Ah	3.6		BE	Bh	6.9			2Fh	11.		48h	16.4 32h -15
9Bh	3.7		BC	Ch	7			30h 31h	11.		49h 4Ah	16.6 34h -15.5 16.8 36h -16
9Ch	3.8		BI	Dh	7.1			32h	11.		4Ah 4Bh	17 38h -16.5
9Dh	3.9		BE	Eh	7.2			32h	12			1/ 38n -10.5 NA 3Ah -17
9Eh	4		BF	'n	7.3			33h	12.		Other	
9Fh	4.1		C0	h	7.4			34n 35h	12.			Other NA
A0h	4.2		Cl	h	7.5			35h	12.			
Alh	4.3		C2	h	7.6			37h	12.			
A2h	4.4		C3		7.7			37h 38h	13			
A3h	4.5		C4		7.8			38h 39h	13.			
A4h	4.6		C5		7.9		- L	3Ah	13.			
A5h	4.7		C6		8		┥┝	3Bh	13.			
A6h	4.8		C7		8.1		- L	ותכ	13.	.0]	
A7h	4.9		C8		8.2		_					
A8h	5		C9		8.3							
A9h	5.1		CA		8.4							
AAh	5.2		CE		8.5							Remark:
ABh	5.3		CC		8.6		_					VSH1>VSH2
ACh	5.4		CI		8.7							
ADh	5.5		CE		8.8							
AEh	5.6			her	NA		_					
AEII	- · ·	1	-	1	-		_	1	r	1		t Set the scanning start position of the gate
	0	0F	0	0	0	0	1	1	1	1	Gate scan star position	driver. The valid range is from 0 to 679.
	1		A7	A6	A5	A4	A3	A2	A1	A0	r	A[9:0] = 000h [POR]
	1		0	0	0	0	0	0	A9	A8		When TB=0: SCN [9:0] = A[9:0] When TB=1: SCN [9:0] = 679 - A[9:0]
commar /W#	nd Table	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
	0	10	0	0	0	1	0	0	0	0	Deep Sleep	
	0	1	0	0	0	0	0	A2	A1	A0	mode	A[1:0]: Description
												00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
	0	11	0	0	0	1	0	0	0	1	Data Entry mode	e Define data entry sequence
	1	<u> </u>	0	0	0	0	0	A2	A1	A0	setting	A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting

setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and

00 – Y decrement, X decrement, 01 – Y decrement, X increment, 10 – Y increment, X decrement, 11 – Y increment, X increment [POR]

lower bit of the address.

												A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

Comma	ind Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[6:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
-	-		-									
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection A[2:0] = 100 [POR], Detect level at 2.3V
0	1		0	0	0	0	0	A2	Al	A0		A[2:0]: VCI level Detect $A[2:0]: VCI level$ $011: 2.2V$ $100: 2.3V$ $101: 2.4V$ $110: 2.5V$ $111: 2.6V$ 0 ther NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control	A[7:0] = 48h [POR], external temperature sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	0	0	0	1	0	Temperature Sensor Control (Write to	Write to temperature register. A[11:0] = 7FFh[POR]
0	1		A11	A10	A9	A8	A7	A6	A5	A4	temperature register)	[]
0	1		A3	A2	A1	A0	0	0	0	0		
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor Control (Read from	Read from temperature register.
1	1		A11	A10	A9	A8	A7	A6	A5	A4	temperature register)	

1	1	A3	A2	A1	A0	0	0	0	0
1	1	115	112	111	110	0	U	0	0

Comma	nd Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A7	A6	A5	A4	A3	A2	Al	A0	Control (Write Command to External	sensor. $A[7:0] = 00h$ [POR],
0 0	1		B7 C7	B6 C6	B5 C5	B4 C4	B3 C3	B2 C2	B1 C1	B0 C0	temperature sensor)	B[7:0] = 00h [POR], $C[7:0] = 00h [POR],$ $A[7:6]$ $A[7:6]$ $C[7:6] Select no of byte to be sent$ $00 Address + pointer$ $01 Address + pointer + 1st arameter$
												01 Address + pointer + 1st analitet 10 Address + pointer + 1st parameter +2nd pointer 11 Address A[5:0] – Pointer Setting B[7:0] – 1st parameter C[7:0] – 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update	RAM content option for Display Update
0	1	21	A7	A6	A5	A4	A3	A2	Al	A0	Control 1	A[7:0] = 00h [POR] A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option
												0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content
0	0	22	0 A7	0 A6	1 A5	0 A4	0 A3	0 A2	1 A1	0 A0	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activation A[7:0]= FFh (POR)
												Parameter (in Hex)
												Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC
												Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC
												Enable Clock Signal, Then Load LUT with 90 DISPLAY Mode 1 Enable Clock Signal,
												Enable Clock Signal, Then Load Temperature value from I2CB0Single Master Interface Then Load LUT with DISPLAY Mode 1B0
												Enable Clock Signal, 98 Then Load LUT with

		1		1	1	1	1	DIGDLAWAY 1.0	
								DISPLAY Mode 2 Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface	B8
								Then Load LUT with DISPLAY Mode 2 Enable Clock Signal, Then Load LUT with	91
								DISPLAY Mode 1 To Disable Clock Signal Enable Clock Signal, Then Load Temperature	
								value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 1 To Disable Clock Signal	B1
								Enable Clock Signal, Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal Enable Clock Signal,	99
								Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal	В9
								Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC	47
								Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC	4F
								To Enable Clock Signal (CLKEN=1)	80
								To Enable Clock Signal, then Enable ANALOG (CLKEN=1, ANALOGEN=1)	C0
								Enable ANALOG Then DISPLAY with DISPLAY Mode 1	44
								Enable ANALOG Then DISPLAY with DISPLAY Mode 2	4C
								To DISPLAY with DISPLAY Mode 1	04
								DISPLAY With DISPLAY Mode 2 To Disable ANALOG,	0C
								then Disable Clock Signal (CLKEN=0, ANALOGEN=0)	03
								o Disable Clock Signal (CLKEN=0)	01

Comma	nd Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D 3	D2	D1	D0	Command	Description
0	0	24	0	0	1	0	0	1	0	0	Write RAM (BW)	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1

												For Black pixel: Content of Write RAM(BW) = 0
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM [According to parameter of Register 41h to select reading RAM(BW) / RAM(RED)], until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
	-						•					
0	0	29	0	0 A6	0	0	1 A 3	0 A2	0 A1	1 A0	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[6]=1, Normal Mode A[6]=0, Reserve A[3:0] = 09h, duration = 10s. VCOM sense duration = Setting + 1 Seconds
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

Comma	nd Table														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descriptio	on		
0	0	2B	0	0	1	0	1	0	1	1	Write Register for		mand is use		
0	1		0	0	0	0	0	1	0	0	VCOM Control		VCOM tog D63h shou		
0	1		0	1	1	0	0	0	1	1		command			
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register			r from MC	CU interface
0	1		A7	A6	A5	A4	A3	A2	A1	A0		A[7:0] = 0 A[7:0]	00h [POR] VCOM	A[7:0]	VCOM
												08h	-0.2	58h	-2.2
												0Ch	-0.3	5Ch	-2.3
												10h	-0.4	60h	-2.4
												14h	-0.5	64h	-2.5
												18h	-0.6	68h	-2.6
												1Ch	-0.7	6Ch	-2.7
												20h	-0.8	70h	-2.8
												24h	-0.9	74h	-2.9
												28h	-1	78h	-3
												2Ch	-1.1	7Ch	-3.1
												30h	-1.2	80h	-3.2
												34h	-1.3	84	-3.3
												38h	-1.4	88	-3.4
												3Ch	-1.5	8C	-3.5

												44h 48h 4Ch 50h	-1.6 -1.7 -1.8 -1.9 -2 -2.1	90 94 98 9C A0	-3.6 -3.7 -3.8 -3.9 -4
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read	Read Regist A[7:0]: VC0			
1	1		A7	A6	A5	A4	A3	A2	A1	A0	forDisplay Option	(Command)			1
1	1		B7	B6	B5	B4	B3	B2	B1	B0		B[7:0]: VC0	OM Regi		
1	1		C7	C6	C5	C4	C3	C2	C1	C0		(Command) C[7:0]~G[7:		lav Modo	
1	1		D7	D6	D5	D4	D3	D2	D1	D0		(Command			
1	1		E7	E6	E5	E4	E3	E2	E1	E0		[5 bytes]			- , ,
1	1		F7	F6	F5	F4	F3	F2	F1	F0		H[7:0]~K[7 (Command)			
1	1		G7	G6	G5	G4	G3	G2	G1	G0		[4 bytes]	ол <i>э</i> г, Б у	a 11 to D	<i>y</i> (0 11)
1	1		H7	H6	H5	H4	H3	H2	H1	H0					
1	1		I7	I6	I5	I4	13	I2	I1	I0					
1	1		J7	J6	J5	J4	J3	J2	J1	JO]				
1	1		K7	K6	K5	K4	K3	K2	K1	K0]				

Comma	and Table	;										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command for OTP content validation. BUSY pad will output high during operation.
		r		r		r	r			r	ſ	1
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC readout Value
1	1		A15	A14	A13	A12	A11	A10	A9	A8		A[15.0] is the EKC readout value
1	1		A7	A6	A5	A4	A3	A2	A1	A0		
		-		-		-	-			-		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to th OTP Selection Control [R37h and R38h The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		-		-		-	-			-		
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display Option	Write Register for Display Option B[7:0] Display Mode for WS[7:0]
0	1		0	0	0	0	0	0	0	0	Display Option	C[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0	1		B7	B6	B5	B4	B3	B2	B1	B0		D[7:0] Display Mode for WS[23:16]
0	1		C7	C6	C5	C4	C3	C2	C1	C0		E[7:0] Display Mode for WS[31:24] F[3:0] Display Mode for WS[35:32]
0	1		D7	D6	D5	D4	D3	D2	D1	D0		0: Display Mode 1
0	1		E7	E6	E5	E4	E3	E2	E1	E0		1: Display Mode2 F[6]: PingPong for Display Mode 2
0	1		F7	F6	F5	F4	F3	F2	F1	F0		F[7]: PingPong for Display Mode 1
0	1		G7	G6	G5	G4	G3	G2	G1	G0		1: Ping-Pong 0: Default
0	1		H7	H6	H5	H4	H3	H2	H1	H0		G[7:0]~J[7:0] module ID /waveform
0	1		I7	16	15	I4	I3	I2	I1	10		version. Remarks: A[7:0]~J[7:0] can be stored
0	1		J7	J6	J5	J4	J3	J2	J1	JO		in OTP
									•		1	L -
0	0	38	0	0	1	1	1	0	0	0	Write Register for	Write Register for User ID
0	1	A7	A6	A5	A4	A3	A2	A1	A0	A7	User ID	A[7:0]]~J[7:0]: UserID [10 bytes] Remarks: A[7:0]~J[7:0] can be stored
0	1	B7	B6	B5	B4	B3	B2	B1	В0	B7	112	in
0	1	C7	C6	C5	C4	C3	C2	C1	C0	B7 C7 D7 E7		OTP
0	1	D7	D6	D5	D4	D3	D2	D1	D0			
0	1	E7	E6	E5	E4	E3	E2	E1	E0			
0	1	F7	F6	F5	F4	F3	F2	F1	F0	F7		

0	1	G7	G6	G5	G4	G3	G2	G1	G0	G7
0	1	H7	H6	H5	H4	H3	H2	H1	H0	H7
0	1	I7	I6	I5	I4	I3	I2	I1	10	I7
0	1	J7	J6	J5	J4	J3	J2	J1	JO	J7

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A1	A0		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences
0	0	3A	0	0	1	1	1	0	1	0	Reserved	Reserved
0	0	3B	0	0	1	1	1	0	1	1	Reserved	Reserved
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform	Select border waveform for VBD
0	1		A7	A6	A5	A4	A3	A2	Al	A0	Control	$\begin{array}{c c} A[7:0] = C0h [POR], set VBD as HIZ. \\ A[7:6] :Select VBD option \\\hline A[7:6] :Select VBD as \\\hline 00 & GS Transition, \\\hline Defined in A[1:0] \\\hline 01 & Fix Level, \\\hline Defined in A[5:4] \\\hline 10 & VCOM \\\hline 11[POR] & HiZ \\\hline A[5:4] Fix Level Setting for VBD \\\hline A[5:4] Fix Level Setting for VBD \\\hline A[5:4] VBD level \\\hline 00[POR] & VSS \\\hline 01 & VSH1 \\\hline 10 & VSL \\\hline 11 & VSH2 \\\hline A[1:0] GS Transition setting for VBD \\\hline A[1:0] & VBD Transition \\\hline 00[POR] & LUT0 \\\hline 01 & LUT1 \\\hline 10 & LUT2 \\\hline 11 & LUT3 \\\hline \end{array}$
								r				
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option A[0]= 0 [POR]
0	1		0	0	0	0	0	0	0	A0		0: Read RAM corresponding to 24h 1: Read RAM corresponding to 26h
	_			_				-				
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Start / End position	window address in the X direction by an address unit for RAM
0	1		-	-	-	-	-	-	A9	A8		A[9:0]: XSA[9:0], XStart, POR = 000h
0	1		0	0	B5	B4	B3	B2	B1		B[5:0]: XEA[9:0], XEnd, POR = 3BFh	
0	1		-	-	-	-	-	-	B9			

Comma	ind Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	45	0	1	0	0	0	1	0	1	Set RAM Y-	
0	1		A7	A6	A5	A4	A3	A2	A1	A0	address Start / End	Specify the start/end positions of the window address in the Y direction by an
0	1		-	-	-	-	-	-	A9	A8	position	address unit for RAM
0	1		B7	B6	B5	B4	B3	B2	B1	B0		A[8:0]: YSA[8:0], YStart, POR = 000h B[8:0]: YEA[8:0], YEnd, POR = 2A7h
0	1		-	-	-	-	-	-	B9	B8		B[8.0]. TEA[6.0], TEhu, TOK – 2A/h
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED	Auto Write RED RAM for Regular Pattern
0	1		A7	A6	A5	A4	A3	A2	A1	A0	RAM for Regular Pattern	A[7:0] = 00h [POR] A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate

٦

												$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
0	0	47	0 A7	1 A6	0 A5	0 A4	0 A3	1 A2	1 A1	1 A0	Auto Write B/W RAM for Regular Pattern	Auto Write B/W RAM for Regular Pattern $A[7:0] = 00h$ [POR] Auto Write B/W RAM for Regular Pattern $A[7:0] = 00h$ [POR] $A[6:4]$ Height $A[6:4]$ Height 000 8 100 001 16 101 010 32 110 512 011 64 111 960 $A[2:0]$: Step Width, POR= 000 Step of alter RAM in X-direction according to Source X-direction according to Source $A[2:0]$ Width $A[2:0]$ Width 001 000 8 100 128 001 16 101 256 010 32 110 512 011 64 111 680 uring operation, BUSY pad will output high. will output
Comma	und Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X	Make initial settings for the RAM X
0	1		A7	A6	A5	A4	A3	A2	A1	A0	address	address in the address counter (AC)
0	1		0	0	0	0	0	0	A9	A8	counter	A[9:0]: 000h [POR].
		r	1	1	T	1	1	1			1	
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y	Make initial settings for the RAM Y
0	1		A7	A6	A5	A4	A3	A2	A1	A0	address counter	address in the address counter (AC) A[9:0]: 000h [POR].
0	1		0	0	0	0	0	0	A9	A8	counter	A[7.0]. 00011 [1 OK].
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However, it can be used to terminate Frame Memory Write or Read Commands.

9.Reference Circuit

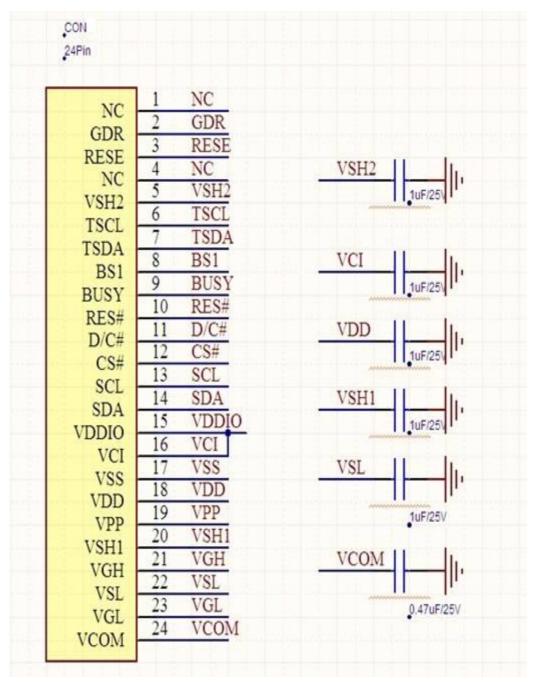


Figure. 9-1

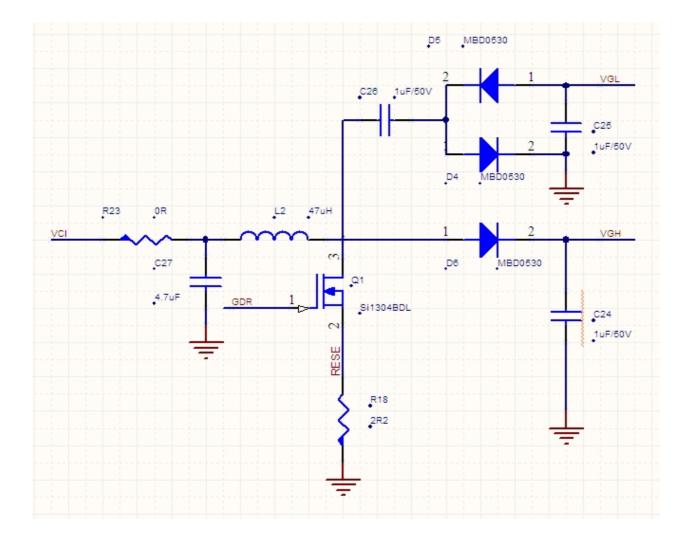


Figure. 9-2

Part Name	Value/Type	Reference Part
D4-D6	Diode	OnSemi:MBR0530
L2	47uH	Sumida:CDRH2D18/LDNP-470NC
Q1	NMOS	Vishay:Si1304BDL
R18	2.20hm	Vishay:CRCW08052R20FKEA
CON 24Pin	0.5mm ZIF socket	Hirose:FH34S-24S-0.5SH(50)

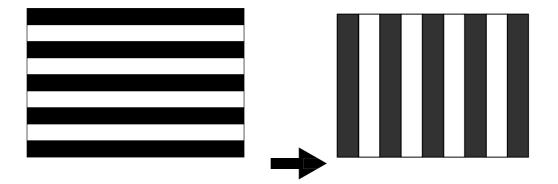
10. ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V _{CI}	Logic supply voltage	-0.5 to +6.0	V
T _{OPR}	Operation temperature range	0 to 50	°C
T _{STG}	Storage temperature range	-25 to 60	°C

11. DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.3V, T_{OPR} =25°C.

	Table 12-1: DC Characteristics									
Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit			
VCI	VCI operation voltage	-	VCI	2.2	3.3	3.7	V			
VIH	High level input voltage	-	SDA, SCL, CS#,	0.8VDDIO	-	-	V			
VIL	Low level input voltage	-	D/C#, RES#, BS1	-	-	0.2VDDIO	V			
VOH	High level output voltage	IOH = -100uA	BUSY,	0.9VDDIO	-	-	V			
VOL	Low level output voltage	IOL = 100uA		-	-	0.1VDDIO	V			
Iupdate	Module operating current	-	-	-		18	mA			
Isleep	Deep sleep mode	VCI=3.3V	-	-		2	uA			


- The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 11-1)

- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by XingTai.

- Vcom value will be OTP before in factory or present on the label sticker.

Note 11-1

The Typical power consumption

12. Serial Peripheral Interface Timing

The following specifications apply for: VSS=0V, VCI=2.2V to 3.7V, T_{OPR} =25°C

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CSB has to be low before the first rising edge of SCLK	20			ns
tCSHLD	Time CSB has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CSB has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CSB has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CSB has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CSB has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

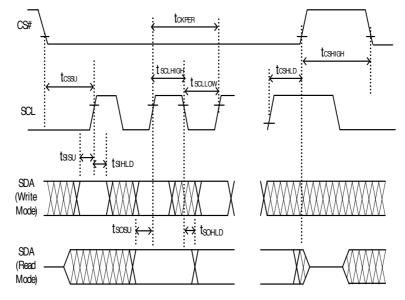
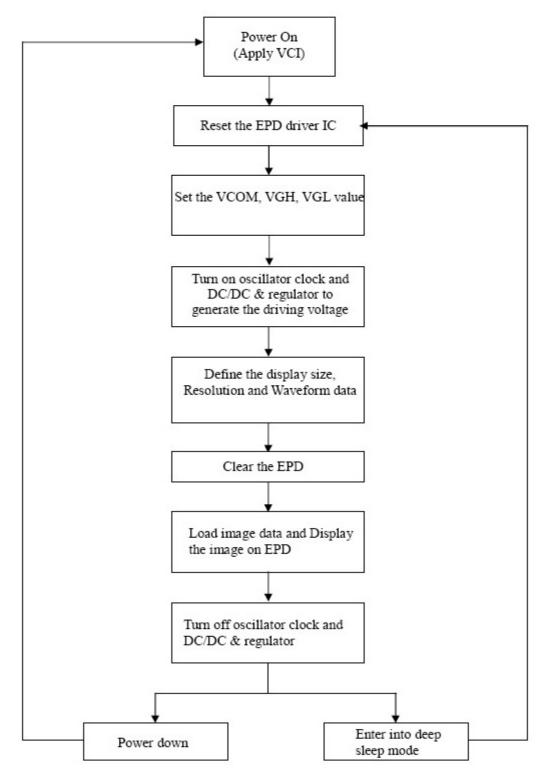
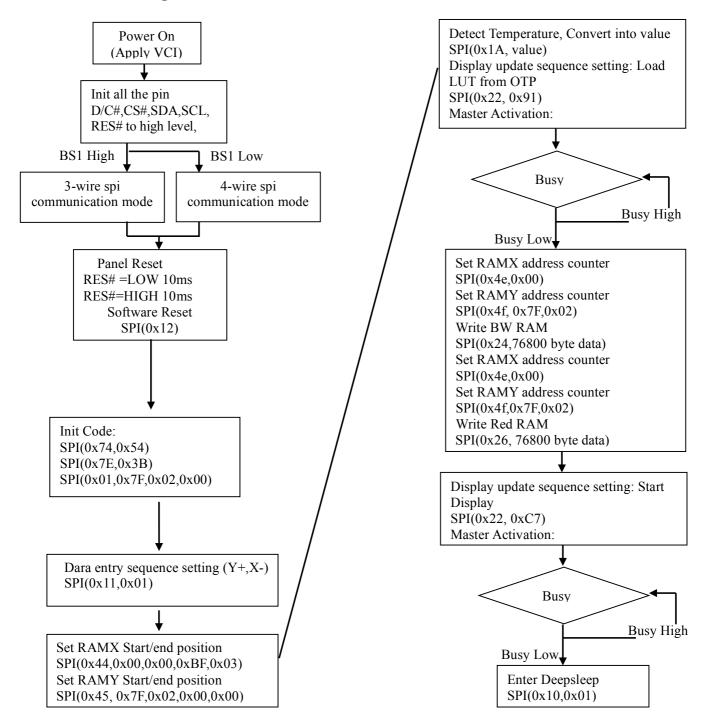


Figure 13-1: Serial peripheral interface characteristics

13. Power Consumption


Parameter	Symbol	Conditions	ТҮР	Max	Unit	Remark
Panel power consumption during update	-	25		75	mAs	-
Deep sleep mode	_	25		2	uA	-

Mas=update average current \times update time


14. Typical Operating Sequence

14.1 Normal Operation Flow

14.2 Reference Program Code

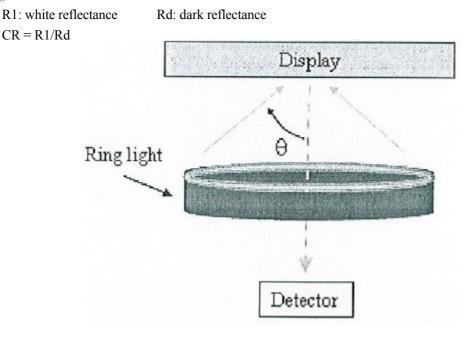
15. Optical characteristics

15.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

					T=	=25	
SYMBOL	PARAMETER	CONDITIO NS	MIN	ТҮРЕ	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 15-1
Gn	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-	L*	-
CR	Contrast Ratio	indoor	-	10	-	-	-
Panel's life	-	0°C~50°C		5years or 1000000 times	-	-	Note 15-2

WS: White state, DS : Dark state

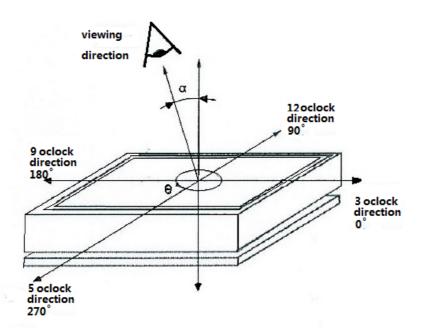

m: 2

Note 15-1: Luminance meter : Eye - One Pro Spectrophotometer

Note 15-2: We guarantee display quality from $0 \sim 30$ generally, If operation ambient temperature from $0 \sim 50$, will Offer special waveform by Xingtai.

15.2Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():


15.3 Reflection Ratio

The reflection ratio is expressed as :

 $R = Reflectance \ Factor \ _{white \ board} \qquad x \ (L \ _{center} \ / \ L \ _{white \ board} \)$

L _{center} is the luminance measured at center in a white area (R=G=B=1). L _{white board} is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

16. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged . Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification

The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

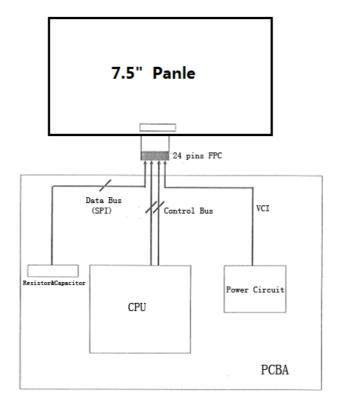
7. Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T=40 , RH=35%RH, For 240Hr	IEC 60 068-2-2Bb	
2	Low-Temperature Operation	T = 0 for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T=60 RH=35%RH For 240Hr Test in white pattern	IEC 60 068-2-2Bb	
4	Low-Temperature Storage	T = -25 for 240 hrs Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, High- Humidity Operation	T=40 , RH=80%RH, For 168Hr	IEC 60 068-2-3CA	
6	High Temperature, High- Humidity Storage	T=50 , RH=80%RH, For 240Hr Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	25 (30min)~60 (30min), 50 Cycle Test in white pattern	IEC 60 068-2-14NB	
8	Package Vibration	1.04G,Frequency : 10~500Hz Direction : X,Y,Z Duration:1hours in each direction	Full packed for shipment	
9	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges,6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	765 W/m²for 168hrs,40	IEC 60068-2-5 Sa	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	IEC61000-4-2	

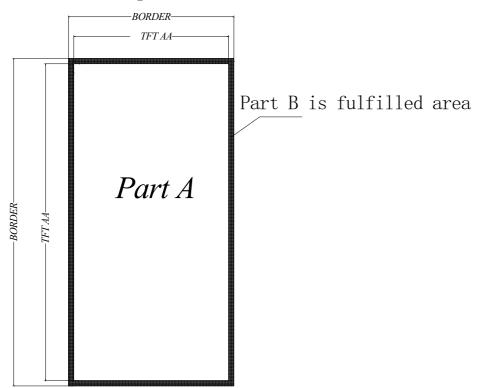
Actual EMC level to be measured on customer application.

Note1: The protective film must be removed before temperature test.

Note2 : Stay white pattern for storage and non-operation test.

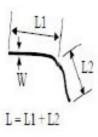

Note3 : Operation is black/white/red pattern , hold time is 150S.

Note4 : The function, appearence, opticals should meet the requirements of the test before and after the test.


Note5 : Keep testing after 2 hours placing at 20°C-25°C.

18. Block Diagram

19. PartA/PartB specification



20. Point and line standard

	\$	Shipment In	spection Standard							
	Eq	uipment: Electr	ical test fixture, Point gaug	;e						
Outline dimension	170.2(H) × 111.2(V) ×1.25(D)	Unit: mm	Unit: mm Part-A Active area Part-B		Border area					
	Temperature	Humidity	Illuminance	Distance	Time	Angle				
Environment	19℃~25℃	55%±5%RH	800~1300Lux	300 mm	35Sec					
Defet type	Inspection method	Standard Part-A				Part-B				
			D≤0.4 mm	Igno	re	Ignore				
Smot	Electric Display	0.4	nm <d≤0.6 mm<="" td=""><td>N≤≤</td><td>1</td><td>Ignore</td></d≤0.6>	N≤≤	1	Ignore				
Spot	Electric Display	0.6	mm≤D≤0.8 mm	N≤1		Ignore				
]	D>0.8 mm	Not Allow		Ignore				
Display unwork	Electric Display]	Not Allow	Not Allow		Ignore				
Display error	Electric Display]	Not Allow	Not Allow		Ignore				
Scratch or line		L≤2	mm, W≤0.2 mm	Ignore		Ignore				
defect(include	Visual/Film card	2.0mm <l≤9.< td=""><td>0mm, 0.2≤W≤0.6mm,</td><td>N≤Z</td><td colspan="2">N≤2</td></l≤9.<>	0mm, 0.2≤W≤0.6mm,	N≤Z	N≤2					
dirt)		L>9.0	0mm, W>0.6mm	Not Al	Ignore					
			D≤0.4mm	Igno	Ignore					
PS Bubble	Visual/Film card	0.4n	nm≤D≤0.6mm	N≤4	Ignore					
		Ι	D>0.6 mm	Not Al	Ignore					
		X≤8mm, Y≤1mm, Do not affect the electrode circuit, Ignore								
Side Fragment	Visual/Film card			Y						
Daml-		1.Cannot be defect & failure cause by appearance defect;								
Remark		2.Cannot be l	arger size cause by appeara	ance defect;						
		L=long W	/=wide D=point size N=	Defects NO						

Line Defect

Spot Defect

L=long W=wide D=point size