
 
 
 

 

UMTS_LTE_5G Linux      

USB Driver User Guide 

UMTS/HSPA+/LTE/5G Module Series 

 Version: 3.0 

 Date: 2022-03-18 

 Status: Released 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         1 / 39 
 
 
 

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you 

require any assistance, please contact our headquarters: 

 

Quectel Wireless Solutions Co., Ltd.  

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 

200233, China  

Tel: +86 21 5108 6236  

Email: info@quectel.com 

 

Or our local offices. For more information, please visit:  

http://www.quectel.com/support/sales.htm. 

 

For technical support, or to report documentation errors, please visit:  

http://www.quectel.com/support/technical.htm. 

Or email us at: support@quectel.com. 

 

Legal Notices 
We offer information as a service to you. The provided information is based on your requirements and we 

make every effort to ensure its quality. You agree that you are responsible for using independent analysis 

and evaluation in designing intended products, and we provide reference designs for illustrative purposes 

only. Before using any hardware, software or service guided by this document, please read this notice 

carefully. Even though we employ commercially reasonable efforts to provide the best possible 

experience, you hereby acknowledge and agree that this document and related services hereunder are 

provided to you on an “as available” basis. We may revise or restate this document from time to time at 

our sole discretion without any prior notice to you. 

 

Use and Disclosure Restrictions 

License Agreements 

Documents and information provided by us shall be kept confidential, unless specific permission is 

granted. They shall not be accessed or used for any purpose except as expressly provided herein. 

 

Copyright 

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material 

shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior 

written consent. We and the third party have exclusive rights over copyrighted material. No license shall 

be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid 

ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal 

non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for 

noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of 

the material. 

mailto:info@quectel.com
http://www.quectel.com/support/sales.htm
http://www.quectel.com/support/technical.htm
mailto:support@quectel.com


 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         2 / 39 
 
 
 

Trademarks 

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights 

to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel 

or any third party in advertising, publicity, or other aspects. 

 

Third-Party Rights 

This document may refer to hardware, software and/or documentation owned by one or more third parties 

(“third-party materials”). Use of such third-party materials shall be governed by all restrictions and 

obligations applicable thereto. 

 

We make no warranty or representation, either express or implied, regarding the third-party materials, 

including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular 

purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any 

third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein 

constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, 

offer for sale, or otherwise maintain production of any our products or any other hardware, software, 

device, tool, information, or product. We moreover disclaim any and all warranties arising from the course 

of dealing or usage of trade. 

 

Privacy Policy 
To implement module functionality, certain device data are uploaded to Quectel’s or third-party’s servers, 

including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the 

relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the 

purpose of performing the service only or as permitted by applicable laws. Before data interaction with 

third parties, please be informed of their privacy and data security policy. 

 

Disclaimer  
a) We acknowledge no liability for any injury or damage arising from the reliance upon the information. 

b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the 

information contained herein.  

c) While we have made every effort to ensure that the functions and features under development are 

free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless 

otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, 

and exclude all liability for any loss or damage suffered in connection with the use of features and 

functions under development, to the maximum extent permitted by law, regardless of whether such 

loss or damage may have been foreseeable. 

d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of 

information, advertising, commercial offers, products, services, and materials on third-party websites 

and third-party resources. 

Copyright © Quectel Wireless Solutions Co., Ltd. 2022. All rights reserved.



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         3 / 39 
 
 
 

About the Document 
 

Revision History 

Version  Date Author Description 

1.0 2015-02-27 Joe WANG Initial 

1.1 2015-3-25 Carl YIN Updated supported products 

1.2 2015-3-30 Kent XU Added Zero Packet feature in Section 3.2.2 and 3.3.2 

1.3 2015-06-24 Carl YIN 

1. Added GobiNet and QMI WWAN description in Section 

3.4 and 3.5 

2. Added building drivers as a kernel module in Section 

3.2.4/3.3.4/3.4.3/3.5.4 

3. Added power management in Chapter 4 

4. Added FAQ and kernel log in Chapter 6 

1.4 2015-12-16  
1. Deleted Auto-Connect of GobiNet and QMI WWAN 

2. Updated the usage of quectel-CM 

1.5 2016-05-13 
Carl YIN/ 

Neo HOU 
Updated supported modules 

1.6 2016-08-23 Kent XU Added EC20 R2.0 in supported modules 

1.7 2017-05-24 Kent XU 
Added EG91/EG95/EG06/EP06/EM06/BG96 in supported 

modules 

1.8 2017-09-01 Kent XU 
Updated description of supported modules and added 

AG35 in supported modules. 

2.0 2019-12-11 Carl YIN 

1. Added applicable modules, which can be referred in 

Table 1. 

2. Updated USB driver interface description in Table 2. 

3. Updated description of USB serial option, GobiNet and 

QMI_WWAN drivers in Chapter 3.2, 3.3 and 3.4. 

4. Added related content of testing command 

“AT$QCRMCALL” and protocol QMAP on GobiNet or 

QMI_WWAN driver in Chapter 5.4 and 5.6 as well as 

testing MBIM driver in Chapter 5.5. 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         4 / 39 
 
 
 

5. Added FAQs in Chapter 6.  

3.0 2022-03-18 Carl YIN 

1. Added applicable modules. 

2. Updated the overview of Linux USB driver (Chapter 2). 

3. Updated the steps of integrating USB serial option 

driver into the Linux operating system (Chapter 3.2). 

4. Updated the kernel configuration modification of 

GobiNet driver (Chapter 3.3.2). 

5. Updated the kernel configuration modification of 

QMI_WWAN_Q (Chapter 3.4.2). 

6. Added the description of ACM/ECM/RNDIS/NCM/MBIM 

drivers (Chapter 3.5). 

7. Updated the information about how to configure the 

kernel to support PPP (Chapter 3.6). 

8. Added the steps of how to configure the kernel (Chapter 

3.7). 

9. Updated AT command testing (Chapter 4.1). 

10. Removed the description of quectel-CM (Chapter 4.3). 

11. Added the information about how to test 

ECM/RNDIS/NCM/MBIM drivers (Chapter 4.6). 

12. Updated the example (Chapter 6.1). 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         5 / 39 
 
 
 

Contents 

About the Document ................................................................................................................................... 3 

Contents ....................................................................................................................................................... 5 

Table Index ................................................................................................................................................... 7 

Figure Index ................................................................................................................................................. 8 

1 Introduction .......................................................................................................................................... 9 

2 Overview of Linux USB Driver .......................................................................................................... 10 

3 System Setup ..................................................................................................................................... 14 

3.1. Linux USB Driver Structure ..................................................................................................... 14 

3.2. USB Serial Option Driver ......................................................................................................... 15 

3.2.1. Add VID and PID ............................................................................................................ 15 

3.2.2. Use USBNet Driver ........................................................................................................ 15 

3.2.3. Modify Kernel Configuration ........................................................................................... 17 

3.2.4. Add the Zero Packet Mechanism ................................................................................... 17 

3.2.5. Add Reset-resume Mechanism ...................................................................................... 18 

3.2.6. Increase the Quantity and Capacity of the Bulk Out URBs ........................................... 19 

3.3. GobiNet Driver ......................................................................................................................... 19 

3.3.1. Modify Source Codes of the Driver ................................................................................ 19 

3.3.2. Modify Kernel Configuration ........................................................................................... 20 

3.4. qmi_wwan_q Driver ................................................................................................................. 20 

3.4.1. Modify Source Codes of the Driver ................................................................................ 20 

3.4.2. Modify Kernel Configuration ........................................................................................... 20 

3.5. ACM/ECM/RNDIS/NCM/MBIM Driver ..................................................................................... 21 

3.6. How to Support PPP ................................................................................................................ 22 

3.7. Configure Kernel ...................................................................................................................... 22 

3.8. Install and Load Driver as a Kernel Module for PC in Linux ................................................... 23 

4 Test the Module .................................................................................................................................. 24 

4.1. Test AT Function ...................................................................................................................... 24 

4.2. Test PPP Function ................................................................................................................... 24 

4.3. Test GobiNet/qmi_wwan_q Driver ........................................................................................... 27 

4.4. Test "AT$QCRMCALL" on GobiNet/ qmi_wwan_q Driver ....................................................... 30 

4.5. Test QMAP on GobiNet/qmi_wwan_q Driver .......................................................................... 31 

4.6. Test ECM/RNDIS/NCM/MBIM Driver ...................................................................................... 32 

5 Power Management ........................................................................................................................... 33 

5.1. Enable USB Auto Suspend...................................................................................................... 33 

5.2. Enable USB Remote Wakeup ................................................................................................. 34 

6 FAQs and Kernel Log ........................................................................................................................ 35 

6.1. How to Check Whether USB Driver Exists in the Module ....................................................... 35 

6.2. How to Check Whether the Module Works Well with the Corresponding USB Driver............ 35 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         6 / 39 
 
 
 

6.3. How to Check Which USB Driver Has Been Installed ............................................................ 37 

7 Appendix References ........................................................................................................................ 38 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         7 / 39 
 
 
 

Table Index 

Table 1: Applicable Modules and USB Interface Information..................................................................... 10 

Table 2: Configuration Items for USB Class Drivers .................................................................................. 21 

Table 3: Related Documents ...................................................................................................................... 38 

Table 4: Terms and Abbreviations .............................................................................................................. 38 

 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         8 / 39 
 
 
 

Figure Index 

Figure 1: Linux USB Driver Structure ......................................................................................................... 14 

Figure 2: Configure USB Serial in Kernel .................................................................................................. 23 

Figure 3: AT Command Test Result ........................................................................................................... 24 

Figure 4: USB Serial Option and GobiNet for RG502Q Series Module .................................................... 36 

Figure 5: USB Serial Option and qmi_wwan_q for RG502Q Series Module ............................................ 36 

Figure 6: USB Interface and Driver for RG502Q Series Module ............................................................... 37 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         9 / 39 
 
 
 

1 Introduction 
 

This document introduces how to port the supported USB drivers for Quectel UMTS&LTE&5G modules 

into the Linux operating system, and how to test the module after the USB driver is integrated successfully. 

The USB driver includes the USB serial drivers like option and ACM, USBNet drivers like GobiNet, 

qmi_wwan_q, MBIM, NCM, RNDIS and ECM. 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         10 / 39 
 
 
 

2 Overview of Linux USB Driver 
 

Quectel UMTS&LTE&5G modules are USB composite devices containing multiple USB interfaces. Each 

USB interface supports different functionalities, which are implemented by loading different USB interface 

drivers. After a driver is loaded successfully, the corresponding device node is generated, which can be 

used by Linux system to implement the module functionalities.  

 

The following table describes the USB interface information of different modules in the Linux system, 

including USB driver, interface number, device name and interface function. 

 

You can obtain the VID, PID and interface information corresponding to the module according to the 

model, and then port the USB interface driver listed in the following table.  

 

Table 1: Applicable Modules and USB Interface Information 

Module’s VID and 

PID 

USB 

Drivers 

Interface 

Number 
Device Names Functions 

EC20-CE/ 

EC25 series/ 

EG25-G/ 

EM05 series: 

VID: 0x2c7c   

PID: 0x0125 

 

EC21 series/ 

EG21-G: 

VID: 0x2c7c  

PID: 0x0121 

 

EG91 series: 

VID: 0x2c7c  

PID: 0x0191 

 

EG95 series: 

USB 

serial 

option 

0 /dev/ttyUSB0 DIAG 

1 /dev/ttyUSB1 GNSS 

2 /dev/ttyUSB2 AT command 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         11 / 39 
 
 
 

VID: 0x2c7c  

PID: 0x0195 

 

BG96: 

VID: 0x2c7c   

PID: 0x0296 

 

AG35 series: 

VID: 0x2c7c   

PID: 0x0435 

 

AG520R series: 

VID: 0x2c7c   

PID: 0x0452 

 

AG550Q series: 

VID: 0x2c7c   

PID: 0x0455 

 

EG06/EP06/EM06: 

VID: 0x2c7c  

PID: 0x0306 

 

EG065K series/ 

EG060K-EA/ 

EG120K series: 

VID: 0x2c7c  

PID: 0x030b 

 

EG12 series/ 

EM12-G/ 

EG18 series: 

VID: 0x2c7c   

PID: 0x0512 

 

EG512R-EA: 

EM160R-GL： 

EM120R-GL： 

EM121R-GL： 

VID: 0x2c7c   

PID: 0x0620 

 

RG500Q series/ 

RM500Q series/ 

3 /dev/ttyUSB3 Modem 

GobiNet 4 
usb0 

/dev/qcqmi0 

USB network adapter 

 

Configure the network card type 

interface as RmNet by 

AT+QCFG="usbnet",0. 

qmi_ww

an_q 
4 

wwan0 

/dev/cdc-wdm0 

USB network adapter 

 

Configure the network card type 

interface as RmNet by 

AT+QCFG="usbnet",0. 

MBIM 

4 

wwan0 

/dev/cdc-wdm0 

USB network adapter 

 

Configure the network card type 

interface as MBIM by 

AT+QCFG="usbnet",2. 

5 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         12 / 39 
 
 
 

RG501Q-EU/ 

RG502Q series/ 

RM502Q-AE/ 

RM505Q-AE/ 

RM510Q-GL: 

VID: 0x2c7c  

PID: 0x0800 

BG95 series/ 

BG77/ 

BG600L-M3: 

VID: 0x2c7c 

PID: 0x0700 

 

USB 

serial 

option 

0 /dev/ttyUSB0 DIAG 

1 /dev/ttyUSB1 GNSS 

2 /dev/ttyUSB2 Modem 

4 /dev/ttyUSB3 

Configure USB composition as 

modem interface mode by 

AT+QCFGEXT="usbnet","modem". 

 

Correspond to Modem USB 

combination: USB DIAG + GNSS + 

Modem + Modem. 

ECM 

3 

usb0 

Configure USB composition as ECM 

interface mode by 

AT+QCFGEXT="usbnet","ecm". 

 

Correspond to ECM USB combination: 

USB DIAG + GNSS + Modem + ECM. 

4 

EC200S series/ 

EG915N-EU: 

VID: 0x2c7c 

PID: 0x6002 

 

EC200T series: 

VID: 0x2c7c 

PID: 0x6026 

 

UC200T series: 

VID: 0x02c7c  

PID: 0x6120 

 

EC200A series: 

VID: 0x02c7c  

PID: 0x6005 

 

UC200A-GL: 

VID: 0x02c7c  

ECM/ 

RNDIS 

0 

usb0 

Configure the network card type 

interface as ECM by 

AT+QCFG="usbnet",1. 

 

Configure the network card type 

interface as RNDIS by 

AT+QCFG="usbnet",3. 

1 

USB 

serial 

option 

2 /dev/ttyUSB0 DIAG 

3 /dev/ttyUSB1 AT command 

4 /dev/ttyUSB2 Modem 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         13 / 39 
 
 
 

 

 

1. GobiNet and qmi_wwan_q can be ported simultaneously for Linux operating system, but only one of 

them can work at a time. i.e. if GobiNet is loaded, qmi_wwan_q cannot be loaded and vice versa. 

2. The device name of current module is not fixed. If no other USB serial device is connected to user’s 

system, the device name of current module starts from /dev/ttyUSB0 as shown above; If another 

USB serial device is connected to the user’s system, the device name of current module is 

determined by the number of device nodes generated by the USB serial device. For example, if an 

USB serial device is connected to user’s system and generates one device node, /dev/ttyUSB0 is 

occupied by USB serial device, then the device name of current module starts from /dev/ttyUSB1. 

3. For detailed information of AT+QCFG, see document [2]. 

4. For detailed information of AT+QCFGEXT, see document [3]. 

 

 

 

PID: 0x6006 

 

EG912Y series: 

VID: 0x02c7c  

PID: 0x6001 

EC200U series/ 

EG915U series: 

VID: 0x2c7c 

PID: 0x0901 

ECM/ 

RNDIS 

0 

usb0 

Configure the network card type 

interface as ECM by 

AT+QCFG="usbnet",1. 

 

Configure the network card type 

interface as RNDIS by 

AT+QCFG="usbnet",3. 

1 

USB 

serial 

option 

2 /dev/ttyUSB0 AT command 

3 /dev/ttyUSB1 DIAG 

4 /dev/ttyUSB2 MOS 

5 /dev/ttyUSB3 CP log 

6 /dev/ttyUSB4 AP log 

7 /dev/ttyUSB5 Modem 

8 /dev/ttyUSB6 GNSS 

NOTE 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         14 / 39 
 
 
 

3 System Setup 
 

This chapter describes the general structure of the USB stack in Linux and how to use, compile and load 

the USB drivers. 

 

3.1. Linux USB Driver Structure 

 

USB is a kind of hierarchical bus structure. The data transmission between USB devices and the host is 

realized by the USB controller. The following figure illustrates the structure of the Linux USB driver. Linux 

USB host driver comprises three parts: USB host controller driver, USB core and USB device drivers. 

Applications

USB Device Drivers

USB Core

USB Host Controller Driver 

(OHCI/EHCI/UHCI)

USB Controller (OHCI/EHCI/UHCI...)

URB

URB

USBD

Interface

HCD

Interface

Quectel Module

Quectel Module 

Software

Linux Host

  

Figure 1: Linux USB Driver Structure 

 

USB host controller driver, the bottom of the hierarchical structure, is a USB driver which interacts directly 

with the hardware.  

 

 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         15 / 39 
 
 
 

USB core, the core of the whole USB host driver, is used for the management of USB bus, USB bus 

devices, and USB bus bandwidth; it provides the interfaces for USB device drivers, through which the 

applications can access the USB system files. 

 

USB device drivers interact with the applications and provide the interfaces for accessing the specific 

USB devices. 

 

3.2. USB Serial Option Driver 

 

When the USB serial option driver has been installed in the module, the device files named as ttyUSB0, 

ttyUSB1, ttyUSB2 and so on are created in directory /dev. 

 

The following chapters show how to port USB serial option driver into the Linux operating system. 

 

3.2.1. Add VID and PID 

In order to recognize the module, add the module’s VID and PID information as below to the file 

[KERNEL]/drivers/usb/serial/option.c and the corresponding VID and PID can be obtained in Table 1. 

 

Taking EC25 series as an example: 

 

3.2.2. Use USBNet Driver 

The configuration in Chapter 3.2.1 makes all the USB interfaces of the module attach to USB serial 

option driver, which causes the USBNet driver interfaces cannot work. You can add the following 

statements to prevent USBNet driver interfaces attaching to USB serial option driver. 

 

⚫ For Linux kernel version higher than 2.6.30, you can add the following statements to the file 

[KERNEL]/drivers/usb/serial/option.c. 

static const struct usb_device_id option_ids[] = { 

#if 1 //Added by Quectel 

 { USB_DEVICE(0x2C7C, 0x0125) },  

#endif 

static int option_probe(struct usb_serial *serial, const struct usb_device_id *id) { 

 struct usb_wwan_intf_private *data; 

 …… 

#if 1  //Added by Quectel 

       if (serial->dev->descriptor.idVendor == cpu_to_le16(0x2C7C)) { 

               __u16 idProduct = le16_to_cpu(serial->dev->descriptor.idProduct); 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         16 / 39 
 
 
 

 

⚫ For Linux kernel version lower than 2.6.31, you can add the following statements to the file 

[KERNEL]/drivers/usb/serial/option.c. 

               struct usb_interface_descriptor *intf = &serial->interface->cur_altsetting->desc; 

 

               if (intf->bInterfaceClass != 0xFF || intf->bInterfaceSubClass == 0x42) { 

                       //ECM, RNDIS, NCM, MBIM, ACM, UAC, ADB 

                       return -ENODEV; 

               } 

 

               if ((idProduct&0xF000) == 0x0000) { 

                       //MDM interface 4 is QMI 

                       if (intf->bInterfaceNumber == 4 && intf->bNumEndpoints == 3 

                               && intf->bInterfaceSubClass == 0xFF && intf->bInterfaceProtocol 

== 0xFF) 

                               return -ENODEV; 

               } 

       } 

#endif 

 /* Store device id so we can use it during attach. */ 

 usb_set_serial_data(serial, (void *)id); 

 return 0; 

} 

static int option_startup(struct usb_serial *serial) 

{ 

…… 

 dbg("%s", __func__); 

#if 1  //Added by Quectel 

       if (serial->dev->descriptor.idVendor == cpu_to_le16(0x2C7C)) { 

               __u16 idProduct = le16_to_cpu(serial->dev->descriptor.idProduct); 

               struct usb_interface_descriptor *intf = &serial->interface->cur_altsetting->desc; 

 

               if (intf->bInterfaceClass != 0xFF || intf->bInterfaceSubClass == 0x42) { 

                       //ECM, RNDIS, NCM, MBIM, ACM, UAC, ADB 

                       return -ENODEV; 

               } 

 

               if ((idProduct&0xF000) == 0x0000) { 

                       //MDM interface 4 is QMI 

                       if (intf->bInterfaceNumber == 4 && intf->bNumEndpoints == 3 

                               && intf->bInterfaceSubClass == 0xFF && intf->bInterfaceProtocol 

== 0xFF) 

                               return -ENODEV; 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         17 / 39 
 
 
 

 

3.2.3. Modify Kernel Configuration 

You need to enable the following configuration items. See Chapter 3.7 for how to configure kernel. 

 

3.2.4. Add the Zero Packet Mechanism 

As required by the USB protocol, the mechanism for processing zero packets needs to be added during 

bulk-out transmission by adding the following statements. 

 

⚫ For Linux kernel version higher than 2.6.34, you need to add the following statements to the file 

[KERNEL]/drivers/usb/serial/usb_wwan.c. 

 

⚫ For Linux kernel version lower than 2.6.35, you need to add the following statements to the file 

[KERNEL]/drivers/usb/serial/option.c. 

               } 

       } 

#endif 

…… 

} 

CONFIG_USB_SERIAL 

CONFIG_USB_SERIAL_WWAN 

CONFIG_USB_SERIAL_OPTION 

static struct urb *usb_wwan_setup_urb(struct usb_serial *serial, int endpoint, 

          int dir, void *ctx, char *buf, int len,void (*callback) (struct urb *)) 

{ 

…… 

 usb_fill_bulk_urb(urb, serial->dev, 

     usb_sndbulkpipe(serial->dev, endpoint) | dir, 

     buf, len, callback, ctx); 

 #if 1   //Added by Quectel for zero packet 

 if (dir == USB_DIR_OUT) { 

  struct usb_device_descriptor *desc = &serial->dev->descriptor; 

 

  if (desc->idVendor == cpu_to_le16(0x2C7C)) 

   urb->transfer_flags |= URB_ZERO_PACKET; 

 } 

#endif 

 return urb; 

} 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         18 / 39 
 
 
 

 

3.2.5. Add Reset-resume Mechanism 

If power loss or reset occurs to some USB host controllers/USB hubs when MCU enters the 

Suspend/Sleep mode, and they cannot be used for USB resume after MCU exits from the Suspend/Sleep 

mode. The reset-resume mechanism needs to be enabled by adding the following statements. 

 

⚫ For Linux kernel version higher than 3.4, you need to add the following statements to the file 

[KERNEL]/drivers/usb/serial/option.c. 

 

⚫ For Linux kernel version lower than 3.5, you need to add the following statements to the file 

[KERNEL]/drivers/usb/serial/usb-serial.c. 

/* Helper functions used by option_setup_urbs */ 

static struct urb *option_setup_urb(struct usb_serial *serial, int endpoint, 

  int dir, void *ctx, char *buf, int len, 

  void (*callback)(struct urb *)) 

{ 

…… 

 usb_fill_bulk_urb(urb, serial->dev, 

     usb_sndbulkpipe(serial->dev, endpoint) | dir, 

     buf, len, callback, ctx); 

 #if 1   //Added by Quectel for zero packet 

 if (dir == USB_DIR_OUT) { 

  struct usb_device_descriptor *desc = &serial->dev->descriptor; 

 

  if (desc->idVendor == cpu_to_le16(0x2C7C)) 

   urb->transfer_flags |= URB_ZERO_PACKET; 

#endif 

 return urb; 

} 

static struct usb_serial_driver option_1port_device = { 

…… 

#ifdef CONFIG_PM 

 .suspend           = usb_wwan_suspend, 

 .resume            = usb_wwan_resume, 

#if 1  //Added by Quectel 

 .reset_resume   = usb_wwan_resume, 

#endif 

#endif 

}; 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         19 / 39 
 
 
 

 

3.2.6. Increase the Quantity and Capacity of the Bulk Out URBs 

For Linux kernel version lower than 2.6.29, the quantity and capacity of the bulk out URBs need to be 

increased to get faster uplink speed by adding the following statements to the file 

[KERNEL]/drivers/usb/serial/option.c. 

 

3.3. GobiNet Driver 

 

When the GobiNet driver has been installed in the module, a network device and a QMI channel are 

created. The network device is named as ethX (usbX if the kernel version is 2.6.39 or lower) and the QMI 

channel is /dev/qcqmiX. The network device is used for data transmission, and QMI channel is used for 

QMI message interaction. 

 

The following chapters explain how to port the GobiNet driver into the Linux operating system. 

 

3.3.1. Modify Source Codes of the Driver 

The GobiNet driver is provided by Quectel in the form of the source file containing source codes. The 

source file should be copied to [KERNEL]/drivers/net/usb/ (or [KERNEL]/drivers/usb/net/ if the kernel 

version is lower than 2.6.22). 

 

/* Driver structure we register with the USB core */ 

static struct usb_driver usb_serial_driver = { 

        .name =         "usbserial", 

        .probe =        usb_serial_probe, 

        .disconnect =   usb_serial_disconnect, 

        .suspend =      usb_serial_suspend, 

        .resume =       usb_serial_resume, 

#if 1 //Added by Quectel 

        .reset_resume = usb_serial_resume, 

#endif 

        .no_dynamic_id =        1, 

        .supports_autosuspend = 1, 

}; 

#define N_IN_URB 4 

#define N_OUT_URB 4        //Increase the quantity of the bulk out URBs to 4. 

#define IN_BUFLEN 4096 

#define OUT_BUFLEN 4096   //Increase the capacity of the bulk out URBs to 128. 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         20 / 39 
 
 
 

3.3.2. Modify Kernel Configuration 

You need to enable the following configuration item first. See Chapter 3.7 for how to configure kernel. 

 

Then you can add the following statements to [KERNEL]/drivers/net/usb/Makefile (or 

[KERNEL]/drivers/usb/net/Makefile if the kernel version is lower than 2.6.22). 

 

3.4. qmi_wwan_q Driver 

 

When the qmi_wwan_q driver has been installed in the module, a network device and a QMI channel are 

created. The network device is named as wwanX and the QMI channel is /dev/cdc-wdmX. The network 

device is used for data transmission, and QMI channel is used for QMI message interaction. 

 

The following chapters explain how to port the qmi_wwan_q driver into the Linux operating system. 

 

3.4.1. Modify Source Codes of the Driver 

The source file containing source codes of qmi_wwan_q driver is [KERNEL]/drivers/net/usb/qmi_wwan.c. 

To use the qmi_wwan_q driver along with the Quectel module, the source file needs to be modified. 

 

To simplify works, Quectel provides the source file qmi_wwan_q.c, which can coexist with qmi_wwan.c 

and only be used for Quectel’s modules. The source file qmi_wwan_q.c should be copied to 

[KERNEL]/drivers/net/usb/. 

 

3.4.2. Modify Kernel Configuration 

Enable the following configuration items first. See Chapter 3.7 for how to configure kernel. 

 

Then add the following statements to [KERNEL]/drivers/net/usb/Makefile. 

CONFIG_USB_NET_DRIVERS 

CONFIG_USB_USBNET 

obj-y += GobiNet.o 

GobiNet-objs := GobiUSBNet.o QMIDevice.o QMI.o 

CONFIG_USB_NET_DRIVERS 

CONFIG_USB_USBNET 

CONFIG_USB_NET_QMI_WWAN 

CONFIG_USB_WDM 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         21 / 39 
 
 
 

 

3.5. ACM/ECM/RNDIS/NCM/MBIM Driver 

 

ACM, ECM, RNDIS, NCM and MBIM drivers are USB interface class drivers. That is, the Linux system 

automatically attaches to the corresponding diver according to the interface’s class, sub class and 

protocol. And these drivers are available in the upstream Linux releases if you use Linux distribution such 

as Ubuntu and Fedora. The drivers are automatically loaded when 

when the module is connected to the Linux PC through the USB interface. If you use an embedded 

system, you just need to enable the corresponding configuration items. 

 

The configuration items to be enabled for each driver are as follows: 

 

Table 2: Configuration Items for USB Class Drivers 

 

 

 

 

 

# must insert qmi_wwan_q.o before qmi_wwan.o 

obj-${CONFIG_USB_NET_QMI_WWAN} += qmi_wwan_q.o 

obj-${CONFIG_USB_NET_QMI_WWAN} += qmi_wwan.o 

USB Drivers Configuration Items Source Files 

ACM CONFIG_USB_ACM [KERNEL]/drivers/net/usb/cdc-acm.c 

ECM 

CONFIG_USB_NET_DRIVERS 

CONFIG_USB_USBNET 

CONFIG_USB_NET_CDCETHER 

[KERNEL]/drivers/net/usb/cdc_ether.c 

RNDIS 

CONFIG_USB_NET_DRIVERS 

CONFIG_USB_USBNET 

CONFIG_USB_NET_RNDIS_HOST  

[KERNEL]/drivers/net/usb/rndis_host.c 

NCM 

CONFIG_USB_NET_DRIVERS 

CONFIG_USB_USBNET 

CONFIG_USB_NET_CDC_NCM 

[KERNEL]/drivers/net/usb/cdc_ncm.c 

MBIM 

CONFIG_USB_NET_DRIVERS 

CONFIG_USB_USBNET 

CONFIG_USB_NET_CDC_MBIM 

[KERNEL]/drivers/net/usb/cdc_mbim.c 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         22 / 39 
 
 
 

3.6. How to Support PPP 

 

If PPP function is used, you need to enable the following configuration items first to configure the kernel to 

support PPP. See Chapter 3.7 for how to configure kernel. 

 

 

3.7. Configure Kernel 

 

Please follow the steps and the corresponding commands below to configure the kernel. 

 

Step 1: Execute the following command to switch to kernel directory: 

 

Step 2: Execute the following command to set environment variables and import the board’s “defconfig” 

  file (taking Raspeberry Pi board for example). 

 

Step 3: Execute the following command to compile the kernel. 

 

Step 4: Enable the configuration item. 

 

Selecting <*> means to build the driver to kernel image. 

 

Selecting <M> means to build the driver as module. 

 

Taking USB serial option as an example, you can enable CONFIG_USB_SERIAL_OPTION with the 

options below. 

CONFIG_PPP 

CONFIG_PPP_ASYNC 

CONFIG_PPP_SYNC_TTY 

CONFIG_PPP_DEFLATE 

cd <your kernel directory> 

export ARCH=arm 

export CROSS_COMPILE=arm-none-linux-gnueabi- 

make bcmrpi_defconfig 

make menuconfig 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         23 / 39 
 
 
 

 

Figure 2: Configure USB Serial in Kernel 

 

3.8. Install and Load Driver as a Kernel Module for PC in Linux 

 

For developers requiring to test Quectel modules on PC with Linux operating system like Ubuntu, Quectel 

can provide source files of USB serial option/GobiNet/qmi_wwan_q drivers. These USB drivers can be 

installed and used by using the following commands and then rebooting the PC. 

 

⚫ Install qmi_wwan_q driver. 

 

⚫ Install GobiNet driver. 

 

⚫ Install USB serial option driver. 

 

 

carl@carl-OptiPlex-7050:~/quectel/qmi_wwan$ sudo make install 

carl@carl-OptiPlex-7050:~/quectel/ GobiNet$ sudo make install 

# First use command `uanme –r` to query the current using kernel version 

carl@carl-OptiPlex-7050:~/quectel/usb-serial-option$ uname  -r 

4.4.0-31-generic 

# Switch to the correspond kernel source directory 

carl@carl-OptiPlex-7050:~/quectel/usb-serial-option$ cd 4.4.0/ 

carl@carl-OptiPlex-7050:~/quectel/usb-serial-option/4.4.0$ cp ../Makefile  ./ 

carl@carl-OptiPlex-7050:~/quectel/usb-serial-option/4.4.0$ sudo make install 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         24 / 39 
 
 
 

4 Test the Module 
 

Generally, AT and PPP functions are supported. If an USBNet driver has been installed, the USB network 

adapter function can also be used on the module. The following chapters explain how to test these 

functions. 

 

4.1. Test AT Function 

 

After the module is connected and the USB driver is loaded successfully, several device files are created 

in the directory /dev. 

 

The AT port is the ttyUSB port created by the USB serial option driver. See Table 1 to view the device 

name corresponding to AT Command or Modem function.  

 

Then UART port tools such as “minicom” or “busybox microcom” shown below can be used to test AT 

function. 

 

Figure 3: AT Command Test Result 

 

4.2. Test PPP Function 

 

If the module supports any USBNet driver, it is recommended to use USBNet driver interface. 

 

PPP dial-up is more complex than network card dial-up, and it causes higher current consumption of CPU, 

so it is not recommended to perform PPP dial-up. 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         25 / 39 
 
 
 

To set up a PPP call, the following files are required. Please check if the following files exist in your 

product: 

 

1. PPPD and chat programs. If the two programs do not exist, you can download the source codes of 

the two programs from https://ppp.samba.org/download.html and port them to the module. 

 

2. One PPP script file named as /etc/ppp/ip-up, which is used to set DNS. If there is no such file, please 

use linux-ppp-scripts\ip-up provided by Quectel. 

 

3. Three scripts named as quectel-ppp, quectel-chat-connect and quectel-chat-disconnect. They are 

provided by Quectel in directory linux-ppp-scripts. You may need to make corresponding changes 

based on different modules. For more information, please refer to linux-ppp-scripts\readme. 

 

Copy quectel-ppp, quectel-chat-connect and quectel-chat-disconnect to the directory /etc/ppp/peers, then 

set up a PPP call by the following command: 

 

The process of PPP calling setup is shown as below: 

# pppd call quectel-ppp & 

abort on (BUSY) 

abort on (NO CARRIER) 

abort on (NO DIALTONE) 

abort on (ERROR) 

abort on (NO ANSWER) 

timeout set to 30 seconds 

send (AT^M) 

expect (OK) 

AT^M^M 

OK 

 -- got it 

 

send (ATD*99#^M) 

expect (CONNECT) 

^M 

ATD*99#^M^M 

CONNECT 

 -- got it 

 

Script chat -s -v -f /etc/ppp/peers/quectel-chat-connect finished (pid 2912), status = 0x0 

Serial connection established. 

using channel 1 

Using interface ppp0 

Connect: ppp0 <--> /dev/ttyUSB3 

https://ppp.samba.org/download.html


 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         26 / 39 
 
 
 

 

Now a PPP call is set up successfully.  

 

Please use the following commands to check whether the information of IP, DNS and route in your system 

belongs to Quectel modules.  

 

sent [LCP ConfReq id=0x1 <asyncmap 0x0> <magic 0x588fbf7f> <pcomp> <accomp>] 

rcvd [LCP ConfReq id=0x0 <asyncmap 0x0> <auth chap MD5> <magic 0xea02c208> <pcomp> 

<accomp>] 

sent [LCP ConfAck id=0x0 <asyncmap 0x0> <auth chap MD5> <magic 0xea02c208> <pcomp> 

<accomp>] 

rcvd [LCP ConfAck id=0x1 <asyncmap 0x0> <magic 0x588fbf7f> <pcomp> <accomp>] 

sent [LCP EchoReq id=0x0 magic=0x588fbf7f] 

rcvd [LCP DiscReq id=0x1 magic=0xea02c208] 

rcvd [CHAP Challenge id=0x1 <86b3d5669380a4bcfa502b8e92a4cc93>, name = 

"UMTS_CHAP_SRVR"] 

sent [CHAP Response id=0x1 <9efc37eaf3dd8d819ac3e452d242e026>, name = "test"] 

rcvd [LCP EchoRep id=0x0 magic=0xea02c208 58 8f bf 7f] 

rcvd [CHAP Success id=0x1 ""] 

CHAP authentication succeeded 

CHAP authentication succeeded 

sent [IPCP ConfReq id=0x1 <addr 0.0.0.0> <ms-dns1 0.0.0.0> <ms-dns2 0.0.0.0>] 

sent [IPCP ConfReq id=0x1 <addr 0.0.0.0> <ms-dns1 0.0.0.0> <ms-dns2 0.0.0.0>] 

rcvd [IPCP ConfReq id=0x0] 

sent [IPCP ConfNak id=0x0 <addr 0.0.0.0>] 

rcvd [IPCP ConfNak id=0x1 <addr 10.187.151.143> <ms-dns1 202.102.213.68> <ms-dns2 

61.132.163.68>] 

sent [IPCP ConfReq id=0x2 <addr 10.187.151.143> <ms-dns1 202.102.213.68> <ms-dns2 

61.132.163.68>] 

rcvd [IPCP ConfReq id=0x1] 

sent [IPCP ConfAck id=0x1] 

rcvd [IPCP ConfAck id=0x2 <addr 10.187.151.143> <ms-dns1 202.102.213.68> <ms-dns2 

61.132.163.68>] 

Could not determine remote IP address: defaulting to 10.64.64.64 

not replacing default route to eth0 [172.18.112.1] 

local  IP address 10.187.151.143 

remote IP address 10.64.64.64 

primary   DNS address 202.102.213.68 

secondary DNS address 61.132.163.68 

Script /etc/ppp/ip-up started (pid 2924) 

Script /etc/ppp/ip-up finished (pid 2924), status = 0x0 

# ifconfig ppp0 

ppp0      Link encap:Point-to-Point Protocol   

          inet addr: 10.187.151.143  P-t-P:10.64.64.64  Mask:255.255.255.255 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         27 / 39 
 
 
 

 

The following commands can be used to terminate the PPPD process to disconnect a PPP call: 

 

 

PPP dial-up is not recommended for Quectel LTE Cat 4 module series and not supported for Quectel 5G 

module series and LTE module series that data rates higher than Cat 4. 

 

4.3. Test GobiNet/qmi_wwan_q Driver 

 

Please follow the steps below to test the GobiNet or qmi_wwan_q driver: 

 

Step 1: Compile the Connect Manager program with the following commands. Quectel provides a   

  Connect Manager program (“quectel-CM”) for you to set up data connection manually. The  

  Connect Manager is provided in the form of source code in the directory quectel-CM. 

 

 

          UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1500  Metric:1 

          RX packets:15 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:19 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:3  

          RX bytes:1057 (1.0 KiB)  TX bytes:1228 (1.1 KiB) 

 

# cat /etc/resolv.conf  

nameserver 61.132.163.68 

nameserver 202.102.213.68 

 

# route  -n 

Kernel IP routing table 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 

10.64.64.64     0.0.0.0         255.255.255.255 UH    0      0        0 ppp0 

0.0.0.0         0.0.0.0         0.0.0.0         U     0      0        0 ppp0 

 

# ping www.baidu.com 

PING www.a.shifen.com (115.239.211.112) 56(84) bytes of data. 

64 bytes from 115.239.211.112: icmp_seq=1 ttl=54 time=46.4ms 

# killall pppd 

Terminating on signal 15 

Connect time 0.4 minutes. 

Sent 0 bytes, received 0 bytes. 

NOTE 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         28 / 39 
 
 
 

⚫ For PC Linux: 

 

⚫ For embedded Linux:  

 

Please replace arm-none-linux-gnueabi- by the cross compiler on the module.  

 

Program “quectel-CM” will be output in this step. 

 

Step 2: Prepare “busybox udhcpc” tool. 

 

quectel-CM calls “busybox udhpc” to obtain IP and DNS, and “busybox udhpc” calls script file 

/usr/share/udhcpc/default.script to set IP, DNS and routing table for Linux board.  

 

You can download the source codes of “busybox udhpc” tool from https://busybox.net, then enable 

CONFIG_UDHCPC with the command below and copy the script file 

[BUSYBOX]/examples/udhcp/simple.script to Linux board (renamed as /usr/share/udhcpc/default.script). 

 

Step 3: Use “quectel-CM” to set up a data call. 

 

After the module is connected and the GobiNet or qmi_wwan_q driver is installed successfully, an USB 

network adapter and a QMI channel are created. The USB network adapter of the GobiNet driver is 

named as ethX (or usbX if the kernel version is 2.6.39 or lower), and the QMI channel is /dev/qcqmiX. The 

USB network adapter of the qmi_wwan_q driver is named as wwanX, and the QMI channel is 

/dev/cdc-wdmX. 

 

quectel-CM sends QMI message to the module through QMI channel to set up a data connection. See 

document [1] for the usage of quectel-CM. 

 

The working process of quectel-CM is shown as below (taking EM12 running qmi_wwan_q driver for 

example): 

# make 

# make CROSS-COMPILE=arm-none-linux-gnueabi- 

busybox menuconfig 

root@cqh6:~# ./quectel-CM/quectel-CM & 

[07-03_06:56:28:172] WCDMA&LTE_QConnectManager_Linux&Android_V1.3.4 

[07-03_06:56:28:172] ./quectel-CM/quectel-CM profile[1] = (null)/(null)/(null)/0, pincode = (null) 

[07-03_06:56:28:174] Find /sys/bus/usb/devices/2-1.2 idVendor=2c7c idProduct=0512 

[07-03_06:56:28:174] Find /sys/bus/usb/devices/2-1.2:1.4/net/wwan0 

[07-03_06:56:28:174] Find usbnet_adapter = wwan0 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         29 / 39 
 
 
 

 

Step 4: Use the following commands to check the information about IP, DNS and route. 

[07-03_06:56:28:175] Find /sys/bus/usb/devices/2-1.2:1.4/usbmisc/cdc-wdm0 

[07-03_06:56:28:175] Find qmichannel = /dev/cdc-wdm0 

[07-03_06:56:28:197] cdc_wdm_fd = 7 

[07-03_06:56:28:381] Get clientWDS = 18 

[07-03_06:56:28:445] Get clientDMS = 1 

[07-03_06:56:28:509] Get clientNAS = 2 

[07-03_06:56:28:573] Get clientUIM = 2 

[07-03_06:56:28:637] Get clientWDA = 1 

[07-03_06:56:28:701] requestBaseBandVersion EM12GPAR01A06M4G 

[07-03_06:56:28:957] requestGetSIMStatus SIMStatus: SIM_READY 

[07-03_06:56:29:021] requestGetProfile[1] cmnet///0 

[07-03_06:56:29:085] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE 

[07-03_06:56:29:149] requestQueryDataCall IPv4ConnectionStatus: DISCONNECTED 

[07-03_06:56:29:277] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE 

[07-03_06:56:29:341] requestSetupDataCall WdsConnectionIPv4Handle: 0x127b42c0 

[07-03_06:56:29:469] requestQueryDataCall IPv4ConnectionStatus: CONNECTED 

[07-03_06:56:29:533] ifconfig wwan0 up 

[07-03_06:56:29:543] busybox udhcpc -f -n -q -t 5 -i wwan0 

udhcpc: started, v1.27.2 

udhcpc: sending discover 

udhcpc: sending select for 10.170.235.201 

udhcpc: lease of 10.170.235.201 obtained, lease time 7200 

[07-03_06:56:29:924] /etc/udhcpc/default.script: Resetting default routes 

[07-03_06:56:29:936] /etc/udhcpc/default.script: Adding DNS 211.138.180.2 

[07-03_06:56:29:936] /etc/udhcpc/default.script: Adding DNS 211.138.180.3 

root@cqh6:~# ifconfig wwan0 

wwan0: flags=4291<UP,BROADCAST,RUNNING,NOARP,MULTICAST>  mtu 1500 

        inet 10.170.235.201  netmask 255.255.255.252  broadcast 10.170.235.203 

 

root@cqh6:~# cat /etc/resolv.conf  

nameserver 211.138.180.2 

nameserver 211.138.180.3 

 

root@cqh6:~# ip route show 

default via 10.170.235.202 dev wwan0  

10.170.235.200/30 dev wwan0 proto kernel scope link src 10.170.235.201  

172.18.112.0/23 dev eth0 proto kernel scope link src 172.18.112.13 

 

# ping www.baidu.com 

PING www.a.shifen.com (115.239.211.112) 56(84) bytes of data. 

64 bytes from 115.239.211.112: icmp_seq=1 ttl=53 time=24.8 ms 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         30 / 39 
 
 
 

Step 5: Use the following command to terminate the quectel-CM process to disconnect the data   

  connection:  

 

4.4. Test "AT$QCRMCALL" on GobiNet/ qmi_wwan_q Driver 

 

This chapter mainly introduces how to use AT$QCRMCALL to set up a data call. 

 

Although it is recommended to use QMI tools like quectel-CM/libqmi/uqmi to set up a data call, but 

AT$QCRMCALL is preferred for some developers.  

 

And if your MCU’s USB Host Controller does not fully support USB interrupt type endpoint, you need to 

use AT$QCRMCALL instead of QMI tools. 

 

For GobiNet driver, in order to use AT$QCRMCALL, “qcrmcall_mode” in GobiUSBNet.c needs to be 

modified as “1”. While for qmi_wwan_q driver, no extra modification is required. 

 

The following logs show how to use AT$QCRMCALL to set up a data call. For details, please contact 

Quectel Technical Supports. 

root@cqh6:~# killall quectel-CM 

[07-03_07:00:10:145] requestDeactivateDefaultPDP err = 0 

[07-03_07:00:10:145] ifconfig wwan0 down 

[07-03_07:00:10:152] ifconfig wwan0 0.0.0.0 

[07-03_07:00:10:553] QmiWwanThread exit 

[07-03_07:00:10:554] main exit 

root@imx6qdlsabresd:~# busybox microcom /dev/ttyUSB2 

at+csq;+cgreg?;+cops? 

+CSQ: 27,99 

+CGREG: 0,1 

+COPS: 0,0,"CHINA MOBILE",7 

OK 

 

AT$QCRMCALL=1,1 

$QCRMCALL: 1,V4 

OK 

 

AT+QNETDEVSTATUS? 

+QNETDEVSTATUS: 0,1,4,1 

OK 

 

root@imx6qdlsabresd:~# busybox udhcpc -fnq -i wwan0 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         31 / 39 
 
 
 

 

 

AT$QCRMCALL is only supported for EC25 series, EG25-G, EC20-CE, EG95 series and EM05 series 

modules. 

 

4.5. Test QMAP on GobiNet/qmi_wwan_q Driver 

 

This chapter introduces how to test the QMAP (Qualcomm Multiplexing and Aggregation Protocol) on 

GobiNet or qmi_wwan_q driver, especially catering for developers using GobiNet or qmi_wwan_q driver 

and requiring QMAP. 

 

When GobiNet or qmi_wwan_q driver being used, only one physical network card can be created by 

default, so only one PDN data call can be set up. However, through using the multiplexing protocol, 

multiple virtual network cards can be created over one physical network card, so multiple PDN data calls 

can be set up. 

 

When GobiNet or qmi_wwan_q driver being used, only one IP Packet in one URB can be transferred, so if 

there are high throughput and frequent URB interrupts, the Host CPU is overloaded. However, the 

aggregation protocol can be used to transfer multiple IP Packets in one URB with increased throughput by 

reducing the number of URB interrupts. 

 

If multiplexing or aggregation protocol is needed, please contact Quectel Technical Supports 

support@quectel.com. 

 

 

 

 

 

 

 

udhcpc (v1.24.1) started 

Sending discover... 

Sending select for 10.166.47.120... 

Lease of 10.166.47.120 obtained, lease time 7200 

/etc/udhcpc.d/50default: Adding DNS 211.138.180.2 

/etc/udhcpc.d/50default: Adding DNS 211.138.180.3 

root@imx6qdlsabresd:~# 

NOTE 

mailto:support@quectel.com


 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         32 / 39 
 
 
 

4.6. Test ECM/RNDIS/NCM/MBIM Driver 

 

For ECM/RNDIS/NCM/MBIM driver, you need to use the Quectel AT commands to set up a data call. 

Different modules have different ways to set up a data call. You can contact Quectel Technical Supports 

for details if needed. 

 

For MBIM mode, MBIM tools like “mbimcli” and “umbim” can be used to set up a data call. 

quectel-CM, which is provided by Quectel, can also be used to set up a data call. See document [1] for 

details. 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         33 / 39 
 
 
 

5 Power Management 
 

The USB system in Linux provides two advanced power management features: USB Auto Suspend and 

USB Remote Wakeup. This chapter introduces how to enable these features, particularly for developers 

in need. 

 

When USB communication between the USB host and the USB devices is idle for some time (for example 

3 seconds), the USB host can make the USB devices enter Suspend mode automatically. This feature is 

called USB Auto Suspend. 

 

USB Remote Wakeup allows a suspended USB device to remotely wake up the USB host over the USB 

which may also be suspended (for example, deep sleep mode). The USB device, which has a remote 

wakeup capability, performs an activity to wake up the USB host, and then the USB host is woken up by 

the remote activity. 

 

USB Auto Suspend and USB Remote Wakeup features of the drivers described in this document except 

USB serial option driver are enabled by default. 

 

5.1. Enable USB Auto Suspend 

 

For USB serial option driver, please add the following statements to option_probe() in the file 

[KERNEL]/drivers/usb/serial/option.c to enable USB Auto Suspend feature. 

static int option_probe(struct usb_serial *serial, const struct usb_device_id *id) { 

 struct usb_wwan_intf_private *data; 

 …… 

#if 1 //Added by Quectel 

//For USB Auto Suspend 

 if (serial->dev->descriptor.idVendor == cpu_to_le16(0x2C7C)) { 

  pm_runtime_set_autosuspend_delay(&serial->dev->dev, 3000); 

  usb_enable_autosuspend(serial->dev); 

 } 

#endif 

 /* Store device id so we can use it during attach. */ 

 usb_set_serial_data(serial, (void *)id); 

 return 0; 

} 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         34 / 39 
 
 
 

5.2. Enable USB Remote Wakeup 

 

For USB serial option driver, please add the following statements to option_probe() in the file 

[KERNEL]/drivers/usb/serial/option.c to enable USB Remote Wakeup feature.  

 

static int option_probe(struct usb_serial *serial, const struct usb_device_id *id) { 

 struct usb_wwan_intf_private *data; 

 …… 

#if 1 //Added by Quectel 

//For USB Remote Wakeup 

 if (serial->dev->descriptor.idVendor == cpu_to_le16(0x2C7C)) { 

  device_init_wakeup(&serial->dev->dev, 1); //usb remote wakeup 

 } 

#endif 

 /* Store device id so we can use it during attach. */ 

 usb_set_serial_data(serial, (void *)id); 

 return 0; 

} 



 
UMTS/HSPA+/LTE/5G Module Series 

 
 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         35 / 39 
 
 
 

6 FAQs and Kernel Log 
 

6.1. How to Check Whether USB Driver Exists in the Module 

 

The existence of the USB driver can be checked from the content of the directory /sys/bus/usb/drivers. 

For example:  

 

If the USB serial option driver is required, please make sure option exists in the content of the directory 

/sys/bus/usb/drivers.  

 

Similarly, if GobiNet driver is required, make sure GobiNet exists.  

 

If qmi_wwan_q driver is required, make sure qmi_wwan_q exists, and so forth.  

 

6.2. How to Check Whether the Module Works Well with the 

Corresponding USB Driver 

 

This chapter shows the kernel log about the module with the corresponding USB driver installed in the 

Linux operating system. If the module does not work well, please compare the kernel log in the module 

with that in this chapter to help with troubleshooting. 

 

⚫ For USB serial option and GobiNet driver: Kernel logs of different modules are almost the same 

except for the VID&PID information (framed in red in the following figure). The example of USB 

serial option and GobiNet for RG502Q series module is as follows: 

root@OpenWrt:~# ls /sys/bus/usb/drivers 

GobiNet           cdc_wdm          rndis_host         usbfs 

cdc_ether          hub               uas               usbserial 

cdc_mbim         option             usb                usbserial_generic 

cdc_ncm          qmi_wwan_q       usb-storage 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         36 / 39 
 
 
 

 

Figure 4: USB Serial Option and GobiNet for RG502Q Series Module 

 

⚫ For USB serial option and qmi_wwan_q driver: kernel logs of different modules are almost the same 

except for the VID&PID information (framed in red in the following figure). The example of USB 

serial option and qmi_wwan_q for RG502Q series module is as follows: 

 

Figure 5: USB Serial Option and qmi_wwan_q for RG502Q Series Module 

 

 

 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         37 / 39 
 
 
 

6.3. How to Check Which USB Driver Has Been Installed 

 

This chapter shows how to query which USB driver that the USB interface of the Quectel module is 

attached to. The USB driver’s name is identified by the keyword “Driver=”. If “Driver=none” is shown, the 

reason may be that the corresponding configuration item is not enabled in your kernel configuration, or 

the VID and PID of Quectel modules are not inserted to the corresponding USB driver source files. In 

such a case, please follow the steps mentioned in Chapter 2 to check again.  

 

The example of USB interface and driver for RG502Q series modules is as follows: 

 

Figure 6: USB Interface and Driver for RG502Q Series Module 

 

 



 
UMTS/HSPA+/LTE/5G Module Series 

 
 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         38 / 39 
 
 
 

7 Appendix References 
 

Table 3: Related Documents 

 

Table 4: Terms and Abbreviations 

Document Name 

[1] Quectel_QConnectManager_Linux_User_Guide 

[2] Quectel_EC2x&EG2x&EG9x&EM05_Series_QCFG_AT_Commands_Manual 

[3] Quectel_BG95&BG77&BG600L_Series_QCFGEXT_AT_Commands_Manual 

Abbreviations Descriptions 

ACM Abstract Control Model 

AP Application Processor 

APN Access Point Name 

CP Coprocessor 

CPU Central Processing Unit 

DNS Domain Name System 

ECM Ethernet Control Model 

EHCI Enhanced Host Controller Interface 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

HCD Host Controller Driver 

IP Internet Protocol 

MBIM Mobile Interface Broadband Model 



 
UMTS/HSPA+/LTE/5G Module Series 

 

UMTS_LTE_5G_Linux_USB_Driver_User_Guide                                         39 / 39 
 
 
 

 

MCU Microcontroller Unit 

NCM Network Control Model 

NDIS Network Driver Interface Specification 

NMEA National Marine Electronics Association 

OHCI Open Host Controller Interface 

OS Operating System 

PC Personal Computer 

PDN Packet Data Network 

PID Product ID 

PPP Point to Point Protocol 

QMAP Qualcomm Multiplexing and Aggregation Protocol 

QMI Qualcomm Messaging Interface 

UHCI Universal Host Controller Interface 

URB USB Request Block 

USB Universal Serial Bus 

VID Vendor ID 


	About the Document
	Contents
	Table Index
	Figure Index
	1 Introduction
	2 Overview of Linux USB Driver
	3 System Setup
	3.1. Linux USB Driver Structure
	3.2. USB Serial Option Driver
	3.2.1. Add VID and PID
	3.2.2. Use USBNet Driver
	3.2.3. Modify Kernel Configuration
	3.2.4. Add the Zero Packet Mechanism
	3.2.5. Add Reset-resume Mechanism
	3.2.6. Increase the Quantity and Capacity of the Bulk Out URBs

	3.3. GobiNet Driver
	3.3.1. Modify Source Codes of the Driver
	3.3.2. Modify Kernel Configuration

	3.4. qmi_wwan_q Driver
	3.4.1. Modify Source Codes of the Driver
	3.4.2. Modify Kernel Configuration

	3.5. ACM/ECM/RNDIS/NCM/MBIM Driver
	3.6. How to Support PPP
	3.7. Configure Kernel
	3.8. Install and Load Driver as a Kernel Module for PC in Linux

	4 Test the Module
	4.1. Test AT Function
	4.2. Test PPP Function
	4.3. Test GobiNet/qmi_wwan_q Driver
	4.4. Test "AT$QCRMCALL" on GobiNet/ qmi_wwan_q Driver
	4.5. Test QMAP on GobiNet/qmi_wwan_q Driver
	4.6. Test ECM/RNDIS/NCM/MBIM Driver

	5 Power Management
	5.1. Enable USB Auto Suspend
	5.2. Enable USB Remote Wakeup

	6 FAQs and Kernel Log
	6.1. How to Check Whether USB Driver Exists in the Module
	6.2. How to Check Whether the Module Works Well with the Corresponding USB Driver
	6.3. How to Check Which USB Driver Has Been Installed

	7 Appendix References

