

Quick Implementation of TFmini-S-IIC and Computer Communication Operation Instructions

1. Overview

This document enables first-time users to quickly understand the tools and methods for conducting IIC communication tests, connect the LiDAR to the PC by consulting the corresponding instruction manual, and complete product testing under the IIC communication protocol by sending commands to obtain distance values and modify the slave address.

This document applies to the product model: TFmini-S (verify the product hardware version and firmware version before testing).

2. Test Preparation

2.1. Necessary Tools

Serial port testing tool (Serial Assistant), USB-UART converter, USBCOM2I2C converter¹, 4P DuPont Line, TFmini-S LiDAR.

2.2. Communication Protocol Switching

TFmini-S factory default communication protocol is UART serial communication. If you want to test IIC communication protocol, you need to convert the communication protocol by sending commands in UART communication mode. The specific operation steps are as follows:

Step 1: Connect TFmini-S to PC via USB-UART converter (any TTL-USB board with 3.3V/5V logical voltage can be used) as shown in Figure 1 (the TTL-USB board shown in the picture is manufactured by Benewake).Check whether the computer COM driver recognizes the converter. If the board is not recognized by the computer, the drivers may not be installed, please install the driver².

Fig.1 USB-UART converter connecting TFmini-S to PC

¹ <u>https://fr.aliexpress.com/item/32830015255.html</u>

https://www.ebay.com/itm/UsenDz-USBCOM2I2C-USB-serial-port-to-I2C-UART-to-I2C-COM-to-I2C-USB-to-I2C-/312761534 249

² <u>https://drive.google.com/drive/folders/1aWltEhSFPEp-iFsVmaRzotptOLwmhoA5?usp=sharing</u>

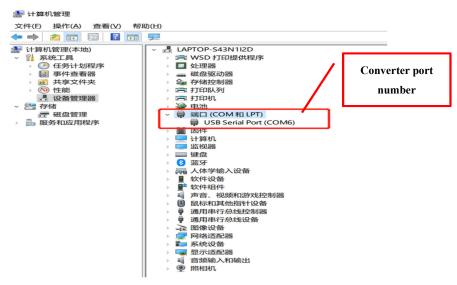


Fig.2 Port number identification

Step 2.

- 1) Open the Serial Assistant (any serial port tool can be used) and select the correct port number, baud rate: 115200.
- Modify to IIC communication protocol: Send communication interface setting command: 5A 05 0A 01 6A Save settings: 5A 04 11 6F
- 3) Reboot the device and the device boots to IIC mode.

Fig.3 Communication interface setup command

59 59 B1 00 E9 02 C8 09 1F 59 59 B2 00 E1 02 C8 09 18 59 59 B3 00 DB 02 C8 09 13 59 59 B3 00 E5 02 C8 09 1D 59 59 B3 00 DE 02 C8 09 16 59 59 B2 00 DD 02 C8 09 14 59 59 B2 00 E3 02 C8 09 1A 59 59 B3 00 DD 02 C8 09 15 59 59 B3 00 DB 02 C8 09 13 [13:40:19.289]皮→◇5A 05 0A 01 6A □ [13:40:36.547]皮→◇5A 04 11 6F □

Fig.4 Communication protocol modified to IIC

Now the TFmini-S has been modified to IIC protocol and can be tested for IIC communication.

2.3. Pin Description

Note: If you are testing other hardware versions, please consult the corresponding product manual for pin definition confirmation of the electrical interface.

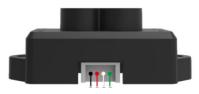


Fig.5 Pinout

	equeinee 2 eccliption
Colour	Function
Black	GND
Red	+5V
White	RXD/SDA
Green	TXD/SCL

Table 1 Line Sequence Description

Fig.6 USBCOM2I2C converter

Table 2 Description of the USBCOM2I2C converter IIC interface

Signal	Function	Explanation				
SCL	Output	IIC Bus Clock				
SDA	Input/Output IIC Bus Data					
GND	Power GND					
VCC	Power	3.3V output, support max. current 200mA				
5V	Power	3.3V output, depends on USB port power capability				

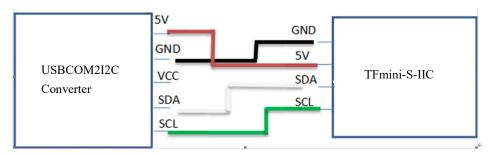


Fig.7 Connect TFmini-S-IIC and USBCOM2I2C converter

Fig.8 USBCOM2I2C converter connecting TFmini-S-IIC to PC

3. Test Steps

3.1. TFmini-S-IIC Establishes Connection with PC

Connect the LiDAR to PC according to Figure 7 and check if the PC COM driver recognizes the converter (*Note: If the USBCOM212C converter is not recognized, please refer to the "USBCOM212C converter User Manual" to view the driver download address, download and install the driver*).

Open the Serial Assistant, select the correct port number, baud rate: 9600, cancel the RTS option, no checksum (select "none" for checksum), and open the serial connection.

Unlike serial communication, IIC communication is initiated by the host, and the LiDAR as a slave can only passively send and receive data. After the host writes the configuration instruction frame to the LiDAR, it needs to wait long enough for the instruction to be processed before reading the feedback operation, the recommended waiting time is 100ms. TFmini-S-IIC mode communication timings are detailed in the following table:

Fig.9 TFmini-S-IIC Mode Communication Timing

3.2. Get the Distance Value

The command to obtain the measured distance of TFmini-S-IIC via serial port is: 53 20 05 5A 05 00 01 60 50 53 21 09 50. Send the command as shown in the figure below.

							0					
[(★有新	航版本V5.13.	1 *)SSC	OM V5.1	2 串口/	网络数据	周试器,作	作者:习小猛	(大虾丁丁)	,2618058	. –		\times
通讯端口	串口设置	显示	发送多	字符串	小工具	帮助	回报作者	PCB打样				
10.50.5	52.204]发		2 00 05	54.00	5 00 01	(0 E	0 52 01	00 50 1	1			
	52.204]发							09 30 1	1			
10.00.0	2.220JAX			001	2 12 00							
清除窗口	1 打开文件							发送文任	+ 停止	清发送区	🕅 English	保
制미号 [C01	M24 USB Ser	ial Por	t 💌	н н	X显示 1	保存数据	国 一 接收	数据到文件	▼ HEX发	送 🗆 定时:	发送: 100	m
â ¥in	串口 👌	更多	串口设置	i 🔽 📶	时间戳和	分包显示	元 超时时间	al: 20 ms	第1字	节至末尾加	校验: None	•
	DTR 波特	案: 9600) 🔻	53 20	05 5A 05	5 00 01	60 50 53	21 09 50				
	哪家强?	· · · ·		1								
	立创![进入	J	5 送									
【升级到SS	SCOM5.13.1]	★2. ★	RT-Thre	ad中国人	的开源免	费操作	系统 ★新-	-代WiFi芯)	╅蕃容82663	支持RT-Thre	ad 🗙 8KMjj	距离
ww.daxia	a.com S:13	3	R:9		COM24	已打开	9600bps	8,1,None,	None			

Fig.10 Acquisition of distance values

Command Explanation:

0x53: S (start) command of the USBCOM2I2C converter, initiating the "start" signal.

0x20: Write operation (the IIC protocol specifies that the high 7 bits represent the address of the slave node; the lowest bit represents the read/write: 0 for write operation and 1 for read operation. TFmini-S default slave address is 0x10 (HEX), and 0x10 in binary is 00010000. Since the higher 7 bits represent the address, first shift 00010000 one bit left to 00100000; because this instruction sends a "write" operation, the lowest bit is 0, i.e. 00100000, which is 0x20 in HEX).

--

0x05: Write 5 bytes of data.

5A 05 00 01 60: Get the distance value (command of TFmini-S).

0x50: P (stop) command of the USBCOM2I2C converter, initiating the "stop" signal.

0x53: S command of the USBCOM2I2C converter, initiating the start signal.

0x21: Read operation (the IIC protocol specifies that the high 7 bits represent the address of slave node; because 0x21 in binary is equal to $(0010\ 0001)$ so 0010000 in HEX is equal to 0x10 which is the address of LiDAR, while the lowest bit represents the read/write: 0 for write operation and 1 for read operation. The TFmini-S default slave address is 0x10 (HEX), and 0x10 in binary is 00010000. Since the higher 7 bits represent the address, first shift 00010000 one bit left to 00100000; because this instruction sends a "read" operation, the lowest bit is 1, i.e. 00100001, which is 0x21 in decimal).

0x09: Read 9 bytes of data.

0x50: P command of the USBCOM2I2C converter, initiating the "stop" signal.

After sending the above command, the TFmini-S-IIC returns 9 bytes of data in the following format.

Byte0-1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8			
0x59 59	Dist_L	Dist_H	Strength_L	Strength_H	Temp_L	Temp_H	Checksum			
	Explanation of Data Codes									
Byte0	0x59, Frame header(same for each frame)									
Byte1	0x59, Frame header(same for each frame)									
Byte2	Dist_L, Low octet of distance									
Byte3	Dist_H, High octet of distance									
Byte4	Strength_L, Low octet of strength									
Byte5	Strength_H, High octet of strength									
Byte6	Temp_L, Low octet of temperature									
Byte7	Temp_H, Low octet of temperature									
Byte8	The cumulative sum of the first eight bytes of data, taking the lower eight bits									

Table 3 Data frame format

For example, the returned data: 59 59 A9 00 0F 3E 60 09 11. The interpretation of the returned data is explained as follows.

0x59 0x59: Frame header.

0xA9: Lower 8 bits of the distance value.

0x00: Higher distance value 8 bits (distance value 0x00A9, 169cm in decimal).

0x0F: Signal strength value lower 8 bits.

0x3E: Signal strength higher 8 bits (strength value 0x3E0F i.e. 15887).

0x60: Chip temperature lower 8 bits.

0x09: Chip temperature higher 8 bits (temperature value 2400/8 - 256 = 44 °C).

0x11: Checksum.

3.3. Modify IIC Slave Address

The format of the command to modify the slave address is as follows. For example, to modify the slave address to 0x20, you need to send the command: 53 20 05 5A 05 0B 20 8A 50 53 41 05 50.

Table 4 Command format for modifying IIC address									
Function	Command	Correct return value	Factory configuration						
Modify IIC_Slave_Addr	5A 05 0B ADDR SU	The same as the sent command	0x10						

Command Explanation:

--

0x53: S command of the USBCOM2I2C converter, initiating the "start" signal.

0x20: Write operation.

0x05: Write 5 bytes of data.

5A 05 0B 20 8A: Modify the IIC slave address. To modify the slave address to 20, ADDR = 20 (HEX). **0x50**: P command of the USBCOM2I2C converter, initiating the "stop" signal.

-

0x53: S command of the USBCOM2I2C converter, initiating the "start" signal.

0x41: Read operation.

0x05: Read 5 bytes of data.

0x50: P command of the USBCOM2I2C converter, initiating the "stop" signal.

--

Send the command as shown in the figure below. LiDAR returns 5A 05 0B 20 8A if the configuration is successful.

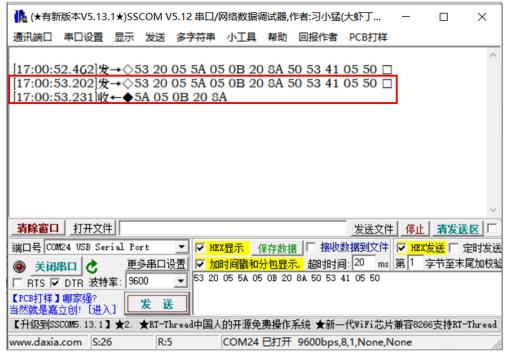


Fig.11 Modifying the IIC slave address and obtaining the range value

After modifying the address to 20, the command to obtain the distance value is: 53 40 05 5A 05 00 01 60 50 53 41 09 50. Refer to 3.2.2. for the explanation of the command meaning.

For more details, please refer to the SJ-PM-TFmini-S-IIC A01 manual.