

1.3inch LCD Module User Manual

OVERVIEW

This is a general LCD display Module, IPS screen, 1.3inch diagonal, 240*240

resolution, with embedded controller, communicating via SPI interface.

Examples are provided for testing. Examples are compatible with Raspberry Pi

(bcm2835, wiringPi and python), STM32 and Arduino

SPECIFICATION

Operating Voltage	: 3.3V
Interface	: SPI
Туре	: TFT
Control Driver	: ST7789
Resolution	: 240(H)RGB x 240(V)
Viewing Area	: 23.4 (H) x 23.4 (V) mm
Pixel size	:0.0975 (H) x 0.0975 (V) mm
Dimension	: 45 x 31(mm)

PINOUT

PIN	Description
VCC	3.3V/5V
GND	Ground
DIN	SPI Data input
CLK	SPI Clock input
CS	Chip selection, Low active
DC	Data/Command selection
RST	Reset
BL	Backlight

目录 Specification1 Pinout......2 Demo codes7 Raspberry Pi......8 Copy to Raspberry Pi......8 Running examples......11 STm32......13 Hardware connection......13

Expected result	13
Arduino	14
Hardware connection	14
-	
Expected result	14
FAO	
•	

HARDWARE

CONTROLLER

ST7789VM is a controller for 240 x RGB x 320 LCD. Note that the resolution of this

LCD module is 240(H)RGB x 240(V) indeed.

ST7789VM supports RGB444, RGB565 and RGB666 three formats. This LCD

module we use RGB565.

For most of the LCD controller, there are several interfaces for choosing, this

module we use SPI interface which is fast and simple.

Note: It is not like the tradition SPI protocol, it only uses MOSI to send data from master to slave for LCD display. For details please refer to Datasheet Page 105.

RESX: Reset, should be pull-down when power on, set to 1 other time.

CSX: Slave chip select. The chip is enabled only CS is set Low

D/CX: Data/Command selection; DC=0, write command; DC=1, write data

SDA: Data transmitted. (RGB data)

SCL: SPI clock

The SPI communication protocol of the data transmission uses control bits: clock phase (CPHA) and clock polarity (CPOL):

CPOL defines the level while synchronization clock is idle. If CPOL=0, then it is LOW.

CPHA defines at whish clock' s tick the data transmission starts. CPHL=0 – at the first one, otherwise at the second one

This combination of two bits provides 4 modes of SPI data transmission. The commonly used is SPI0 mode, i.e. GPHL=0 and CPOL=0.

According to the figure above, data transmitting begins at the first falling edge, 8bit data are transmitted at one clock cycle. It is SPI0. MSB.

DEMO CODES

DOWNLOAD

Visit Waveshare wiki and search for 1.3inch LCD Module. Download the demo code:

More 🖉

 User Manual 		
Demo code		
 Schematic 		

Extract and get the folders as below:

Arduino	2018/11/26 19:18	文件夹
RaspberryPi	2018/11/24 17:27	文件夹
STM32	2018/11/26 19:18	文件夹

Arduino: For Arduino UNO

Raspberry Pi: Includes three examples, BCM2835, WiringPi and Python

STM32: For XNUCLEO-F103RB, which integrate STM32F103RBT6

RASPBERRY PI

COPY TO RASPBERRY PI

1. Insert SD card which has Raspbian installed to your PC

资料 (D:)		Software (E:)
150 GB 可用, 共 199 GB		183 GB 可用, 共 199 GB
Project (G:)		boot (K:)
471 GB 可用, 共 531 GB		20.8 MB 可用, 共 42.5 MB

2. Copy RaspberryPi extracted to root directory (BOOT) of SD card

boot ((K:) >			
* ^	名称	修改日期	美型	大小
	overlays	2018/9/12 10:58	文件夹	
	RaspberryPi	2018/11/24 17:27	文件夹	
	bcm2708-rpi-0-w.dtb	2018/6/19 12:06	DTB 文件	22 KB
	bcm2708-rpi-b.dtb	2018/6/19 12:06	DTB 文件	22 KB
	bcm2708-rpi-b-plus.dtb	2018/6/19 12:06	DTB 文件	22 KB

3. Power on your Raspberry Pi and open Terminal, you can find that the examples is

listed in boot directory

<pre>pi@raspberrypi:~ \$ ls /boot/</pre>	/					
bcm2708-rpi-0-w.dtb bcm2	271θ-rpi-3-b.dtb co	onfig.txt	fixup_x.dat	kernel.img	<pre>start_cd.elf</pre>	
bcm2708-rpi-b.dtb bcm2	2710-rpi-3-b-plus.dtb CO	OPYING.linux H	FSCK0000.REC	LICENCE.broadcom	<pre>start_db.elf</pre>	
bcm2708-rpi-b-plus.dtb bcm2	2710-rpi-cm3.dtb fi	ixup_cd.dat I	FSCK0001.REC	LICENSE.oracle	start.elf	
bcm2708-rpi-cm.dtb boot	tcode.bin fi	ixup.dat	issue.txt	overlays	<pre>start_x.elf</pre>	
bcm2709-rpi-2-b.dtb cmdl	line.txt fi	ixup_db.dat	kernel7.img 📘	RaspberryPi	System Volume	Information

4. Copy the RaspberryPi folder to /home/pi and change its execute permission.

sudo cp -r /boot/RaspberryPi/ ./		
sudo chmod 777 -R RaspberryPi/		
<pre>pi@raspberrypi:~ \$ sudo cp -r /boot/RaspberryPi/ ./ pi@raspberrypi:~ \$ ls code libcode RaspberryPi RPIlib ubuntu usbdisk pi@raspberrypi:~ \$ sudo chmod 777 -R RaspberryPi/ pi@raspberrypi:~ \$ ls code libcode RaspberryPi RPIlib ubuntu usbdisk</pre>		

LIBRARIES INSTALL

To use the demo codes, you need to first install libraries

Install BCM2835:

Download bcm2835 libraries from http://www.airspayce.com/mikem/bcm2835/, Copy

it to Raspberry Pi and install it.

cd sudo tar zxvf bcm2835-1.xx.tar.gz cd bcm2835-1.xx sudo ./configure sudo make sudo make check sudo make install

xx is the version of library. For example, if the library you download is bcm2835-1.52,

the command should be : sudo tar zxvf bcm2835-1.52.tar.gz

Install wiringPi:

Open Terminal

cd

sudo apt-get install git

sudo git clone git://git.drogon.net/wiringPi

cd wiringPi

sudo ./build

cd

Install Python libraries:

Open Terminal

cd sudo apt-get install python-pip sudo pip install RPi.GPIO sudo pip install spidev sudo apt-get install python-imaging sudo pip install numpy sudo apt-get install ttf-wqy-zenhei cd

HARDWARE CONNECTION

The color of cable provided may be different, please connect it according to the silk

screen printing.

1.3inch LCD	Raspberry Pi (Board)	Raspberry Pi (BCM)
VCC	5V	5V
CND	CND	
GIND	GND	GND
DIN	19	MOSI
CLK	23	SCLK
CS	24	CE0
DC	22	P25
RST	13	P27
BL	12	P18

RUNNING EXAMPLES

Enter the folder: cd RaspberryPi/

pi@raspb	errypi:~	\$ cd RaspberryP:	i/
pi@raspb	errypi:~	/RaspberryPi \$ l	5
bcm2835	python	wiringpi	

bcm2835 example:

cd bcm2835

sudo ./main

If you get error information that cannot find the file, please execute **sudo make** to

compile codes and try again. Press Ctrl and C to stop running

wiringpi example:

cd wiringpi

sudo ./main

If you get error information that cannot find the file, please execute sudo make to

compile codes and try again. Press Ctrl and C to stop running

python example:

cd python

sudo python main.py

Press Ctrl and C to stop running

EXPECTED RESULT

- 1. Clear screen
- 2. Display number and strings
- 3. Draw figures
- 4. Display 100x100 image
- 5. Display 240x240 image

STM32

The development board used is XNUCLEO-F103RB, based on HAL library

HARDWARE CONNECTION

1.3inch LCD	XNUCLEO-F103RB
VCC	5V
GND	GND
	547
DIN	PA/
CLK	DA5
CER	FAJ
CS	PB6
DC	PA8
RST	PA9
BL	PBO

EXPECTED RESULT

- 1. Clear screen
- 2. Display number and strings
- 3. Draw figures
- 4. Display 70x70 image

ARDUINO

This example is compatible with Arduino UNO

HARDWARE CONNECTION

1.3inch LCD	UNO
VCC	5V
GND	GND
CLK	D13
DIN	D11
CS	D10
DC	D7
RST	D8
BL	D9

EXPECTED RESULT

- 1. Clear screen
- 2. Display number and strings
- 3. Display figures
- 4. Display 70x70 image

FAQ

1. How to control backlight?

- You can use the function LCD_SetBacklight() to control the backlight

2. Why the LCD is black when working with Raspberry Pi

a) Check if SPI interface was enabled

b) Check if the BL pin work normally, if the pin has no output, please try to

disconnect the BL control pin

3. What does it happen if using Raspberry Pi improperly?

If you run python or bcm2835 examples after wiringPi, the LCD may cannot work

normally, please try to restart Raspberry Pi can try again.

4. How to rotate display?

-You can use the function Paint_SetRotate(Rotate) to rotate display. Rotate should

be 0, 90, 180 or 270.

-Python can call rotate(Rotate) function for any angle.

5. Python Image library

- For some of the OS, you should execute command to install python-imaging

library: sudo apt-get install python-imaging