OVERVIEW

This is a general LCD display Module, IPS screen, 1.3inch diagonal, 240*240 resolution, with embedded controller, communicating via SPI interface.

Examples are provided for testing. Examples are compatible with Raspberry Pi (bcm2835, wiringPi and python), STM32 and Arduino

SPECIFICATION

<table>
<thead>
<tr>
<th>Operating Voltage</th>
<th>: 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>: SPI</td>
</tr>
<tr>
<td>Type</td>
<td>: TFT</td>
</tr>
<tr>
<td>Control Driver</td>
<td>: ST7789</td>
</tr>
<tr>
<td>Resolution</td>
<td>: 240(H)RGB x 240(V)</td>
</tr>
<tr>
<td>Viewing Area</td>
<td>: 23.4 (H) x 23.4 (V) mm</td>
</tr>
<tr>
<td>Pixel size</td>
<td>: 0.0975 (H) x 0.0975 (V) mm</td>
</tr>
<tr>
<td>Dimension</td>
<td>: 45 x 31(mm)</td>
</tr>
<tr>
<td>PIN</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>VCC</td>
<td>3.3V/5V</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>DIN</td>
<td>SPI Data input</td>
</tr>
<tr>
<td>CLK</td>
<td>SPI Clock input</td>
</tr>
<tr>
<td>CS</td>
<td>Chip selection, Low active</td>
</tr>
<tr>
<td>DC</td>
<td>Data/Command selection</td>
</tr>
<tr>
<td>RST</td>
<td>Reset</td>
</tr>
<tr>
<td>BL</td>
<td>Backlight</td>
</tr>
</tbody>
</table>
目录

- **Overview** ... 1
 - Specification ... 1
 - Pinout ... 2
- **Hardware** ... 5
 - Controller .. 5
 - Communication protocol .. 5
- **Demo codes** ... 7
- **Download** ... 7
- **Raspberry Pi** ... 8
 - Copy to Raspberry Pi ... 8
 - Libraries install .. 8
- **Hardware connection** .. 10
- **Running examples** ... 11
- **Expected result** .. 12
- **STM32** .. 13
 - Hardware connection .. 13

3 / 15
Expected result ... 13

Arduino .. 14

Hardware connection ... 14

Expected result ... 14

FAQ ... 15
HARDWARE

CONTROLLER

ST7789VM is a controller for 240 x RGB x 320 LCD. Note that the resolution of this LCD module is 240(H)RGB x 240(V) indeed.

ST7789VM supports RGB444, RGB565 and RGB666 three formats. This LCD module we use RGB565.

For most of the LCD controller, there are several interfaces for choosing, this module we use SPI interface which is fast and simple.

COMMUNICATION PROTOCOL

Note: It is not like the tradition SPI protocol, it only uses MOSI to send data from master to slave for LCD display. For details please refer to Datasheet Page 105.

RESX: Reset, should be pull-down when power on, set to 1 other time.
CSX: Slave chip select. The chip is enabled only CS is set Low

D/CX: Data/Command selection; DC=0, write command; DC=1, write data

SDA: Data transmitted. (RGB data)

SCL: SPI clock

The SPI communication protocol of the data transmission uses control bits: clock phase (CPHA) and clock polarity (CPOL):

CPOL defines the level while synchronization clock is idle. If CPOL=0, then it is LOW.

CPHA defines at which clock’s tick the data transmission starts. CPHL=0 – at the first one, otherwise at the second one

This combination of two bits provides 4 modes of SPI data transmission. The commonly used is SPI0 mode, i.e. GPHL=0 and CPOL=0.

According to the figure above, data transmitting begins at the first falling edge, 8bit data are transmitted at one clock cycle. It is SPI0. MSB.
DEMO CODES

DOWNLOAD

Visit Waveshare wiki and search for 1.3inch LCD Module. Download the demo code:

More

Resources

- User Manual
- Demo code
- Schematic

Extract and get the folders as below:

Arduino: For Arduino UNO

Raspberry Pi: Includes three examples, BCM2835, WiringPi and Python

STM32: For XNUCLEO-F103RB, which integrate STM32F103RBT6
COPY TO RASPBERRY PI

1. Insert SD card which has Raspbian installed to your PC

2. Copy RaspberryPi extracted to root directory (BOOT) of SD card

3. Power on your Raspberry Pi and open Terminal, you can find that the examples is listed in boot directory

4. Copy the RaspberryPi folder to /home/pi and change its execute permission.

 sudo cp -r /boot/RaspberryPi/ ./
 sudo chmod 777 -R RaspberryPi/

LIBRARIES INSTALL
To use the demo codes, you need to first install libraries

Install BCM2835:


```bash
cd
sudo tar zxf bcm2835-1.xx.tar.gz

cd bcm2835-1.xx
sudo ./configure
sudo make
sudo make check
sudo make install

xx is the version of library. For example, if the library you download is bcm2835-1.52, the command should be: sudo tar zxf bcm2835-1.52.tar.gz

**Install wiringPi:**

Open Terminal

```bash
cd
sudo apt-get install git

sudo git clone git://git.drogon.net/wiringPi

cd wiringPi
```
sudo ./build

cd

**Install Python libraries:**

Open Terminal

cd

```bash
sudo apt-get install python-pip
sudo pip install RPi.GPIO
sudo pip install spidev
sudo apt-get install python-imaging
sudo pip install numpy
sudo apt-get install ttf-wqy-zenhei
```

cd

**HARDWARE CONNECTION**

The color of cable provided may be different, please connect it according to the silk screen printing.
1.3 inch LCD Module User Manual

<table>
<thead>
<tr>
<th>1.3inch LCD</th>
<th>Raspberry Pi (Board)</th>
<th>Raspberry Pi (BCM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>DIN</td>
<td>19</td>
<td>MOSI</td>
</tr>
<tr>
<td>CLK</td>
<td>23</td>
<td>SCLK</td>
</tr>
<tr>
<td>CS</td>
<td>24</td>
<td>CE0</td>
</tr>
<tr>
<td>DC</td>
<td>22</td>
<td>P25</td>
</tr>
<tr>
<td>RST</td>
<td>13</td>
<td>P27</td>
</tr>
<tr>
<td>BL</td>
<td>12</td>
<td>P18</td>
</tr>
</tbody>
</table>

**RUNNING EXAMPLES**

Enter the folder: cd RaspberryPi/

```bash
pi@raspberrypi:~ $ cd RaspberryPi/
pi@raspberrypi:~$/RaspberryPi$ ls
bcm2835 python wiringpi
```

bcm2835 example:

```bash
cd bcm2835
sudo ./main
```

If you get error information that cannot find the file, please execute `sudo make` to compile codes and try again. Press Ctrl and C to stop running.

wiringpi example:
cd wiringpi
sudo ./main

If you get error information that cannot find the file, please execute `sudo make` to compile codes and try again. Press Ctrl and C to stop running.

python example:

cd python
sudo python main.py

Press Ctrl and C to stop running.

---

**EXPECTED RESULT**

1. Clear screen
2. Display number and strings
3. Draw figures
4. Display 100x100 image
5. Display 240x240 image
The development board used is XNUCLEO-F103RB, based on HAL library

**HARDWARE CONNECTION**

<table>
<thead>
<tr>
<th>1.3inch LCD</th>
<th>XNUCLEO-F103RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>5V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>DIN</td>
<td>PA7</td>
</tr>
<tr>
<td>CLK</td>
<td>PA5</td>
</tr>
<tr>
<td>CS</td>
<td>PB6</td>
</tr>
<tr>
<td>DC</td>
<td>PA8</td>
</tr>
<tr>
<td>RST</td>
<td>PA9</td>
</tr>
<tr>
<td>BL</td>
<td>PB0</td>
</tr>
</tbody>
</table>

**EXPECTED RESULT**

1. Clear screen
2. Display number and strings
3. Draw figures
4. Display 70x70 image
ARDUINO

This example is compatible with Arduino UNO

HARDWARE CONNECTION

<table>
<thead>
<tr>
<th>1.3inch LCD</th>
<th>UNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>5V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>CLK</td>
<td>D13</td>
</tr>
<tr>
<td>DIN</td>
<td>D11</td>
</tr>
<tr>
<td>CS</td>
<td>D10</td>
</tr>
<tr>
<td>DC</td>
<td>D7</td>
</tr>
<tr>
<td>RST</td>
<td>D8</td>
</tr>
<tr>
<td>BL</td>
<td>D9</td>
</tr>
</tbody>
</table>

EXPECTED RESULT

1. Clear screen

2. Display number and strings

3. Display figures

4. Display 70x70 image
FAQ

1. **How to control backlight?**
   - You can use the function LCD_SetBacklight() to control the backlight

2. **Why the LCD is black when working with Raspberry Pi**
   a) Check if SPI interface was enabled
   b) Check if the BL pin work normally, if the pin has no output, please try to disconnect the BL control pin

3. **What does it happen if using Raspberry Pi improperly?**
   If you run python or bcm2835 examples after wiringPi, the LCD may cannot work normally, please try to restart Raspberry Pi can try again.

4. **How to rotate display?**
   - You can use the function Paint_SetRotate(Rotate) to rotate display. Rotate should be 0, 90, 180 or 270.
   - Python can call rotate(Rotate) function for any angle.

5. **Python Image library**
   - For some of the OS, you should execute command to install python-imaging library: sudo apt-get install python-imaging