

APPLICATION NOTE - REFERENCE DESIGN

Model Name: 3.7inch e-Paper

2 bit B/W/DG/LG

Revision History

Rev.	Issued Date	Revised Contents	
1.0	2020-05-29	1. New	

TECHNICAL SPECIFICATION

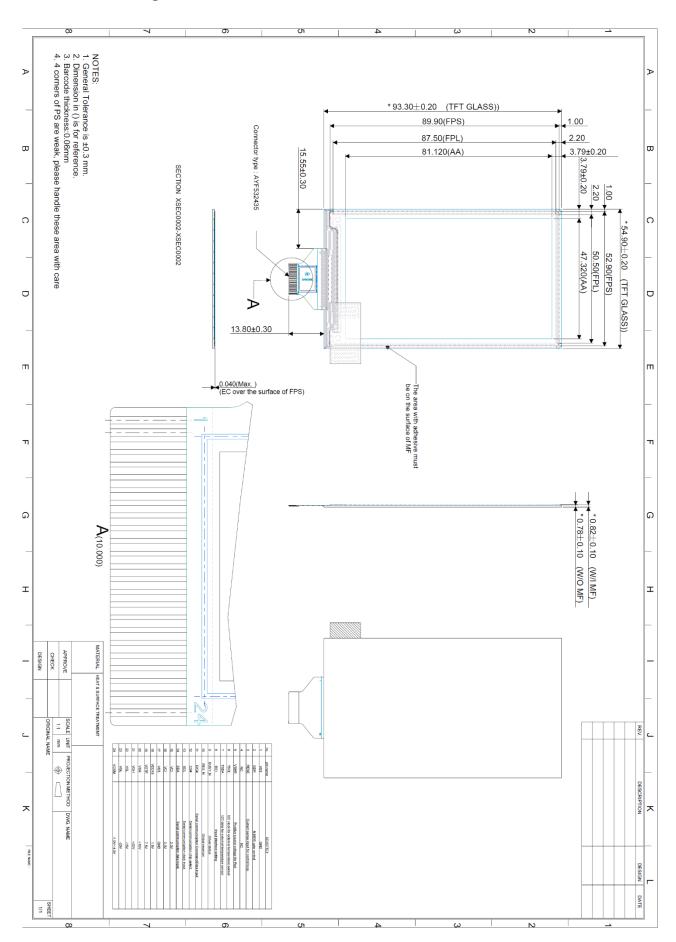
<u>CONTENTS</u>

1.	Application	1
2.	Features	1
3.	Mechanical Specifications	1
4.	Mechanical Drawing of EPD Module	2
5.	Output Interface	3
6.	Electrical Characteristics	5
7.	Power Sequence	10
8.	Optical Characteristics	12
9.	Handling, Safety and Environmental Requirements and Remark	12
10.	Reliability Test	14
11.	Block Diagram	14
12	Packing	16

1. Application

The 3.7inch e-Paper is a color, reflective electrophoretic E Ink® technology display module. It is based on active matrix TFT substrate, featuring capacitive touch panel and front light and color component. It has 3.7" active area, the display is capable to display images at 4 gray levels (2 bit) depending on the display controller and the associated waveform file it used.

2. Features


- ➤ High contrast reflective/electrophoretic technology
- > Ultra wide viewing angle
- ➤ Ultra low power consumption
- ➤ Glass TFT
- Portrait mode
- Commercial temperature range
- ➤ All in one IC that integrated source driver, gate driver, TCON, PMIC and OTP memory in the module.

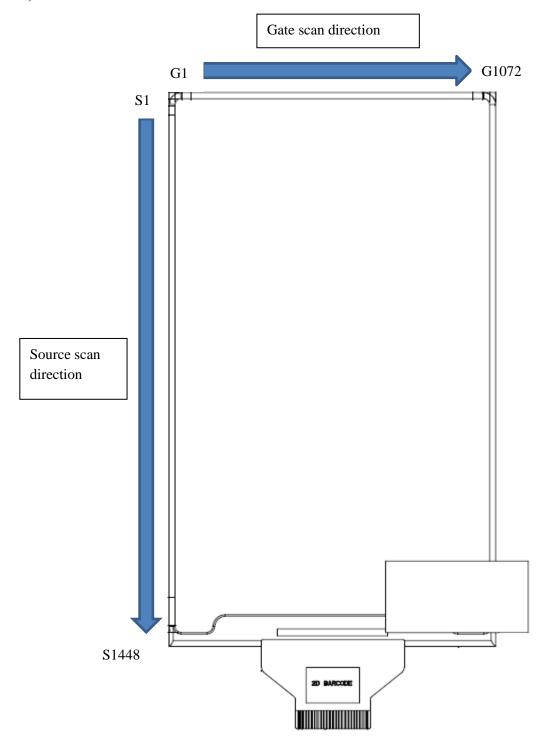
3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	3.69	Inch	
Display Resolution	280(H) x 480(V)	Pixel	150dpi B/W
Display color	monochrome	-	
Active Area	47.32(H) x 81.12(V)	mm	
Pixel Pitch	0.169(H) x 0.169(V)	mm	
Outline Dimension	54.9(H) x 93.3(V) × 0.78 (D)	mm	
Module Weight	8.10 ± 0.81	g	
Number of Gray	4 Gray Level		

4. Mechanical Drawing of EPD Module

5. Output Interface

5-1) Recommended Connector Type of Panel


Panasonic Y5B AYF532435 or P-TWO 196225-24041

5-2) Pin Assignment of Panel

Pin#	Signal	I/O	Description	Remark
1	NC	-	NC	
2	GDR	О	N-MOS gate control	
3	RESE	О	Current sense input for control loop.	
4	NC	P	NC	
5	VSH2	P	Positive source voltage for reserve	5V (Reserve.)
6	TSCL	О	I2C clock for external temperature sensor	
7	TSDA	I/O	I2C data for external temperature sensor	
8	BS1	I	Input interface setting	
9	BUSY	О	Driver status.	
10	RES#	I	Global reset pin	
11	D/C#	I	Serial communication Command/Data input	
12	CS#	I	Serial communication chip select.	
13	SCL	О	Serial communication clock input.	
14	SDA	I/O	Serial communication data input.	
15	VDDIO	P	Digital/IO/Analog power	3.3V
16	VCI	P	Digital/IO/Analog power	3.3V
17	VSS	P	Ground	
18	VDD	P	1.8V voltage input &output	1.8V
19	VPP	О	OTP program power	7.5V
20	VSH1	P	Positive source voltage	+15V
21	VGH	P	Positive gate voltage	+20V
22	VSL	P	Negative source voltage	-15V
23	VGL	P	Negative gate voltage	-20V
24	VCOM	P	VCOM output	

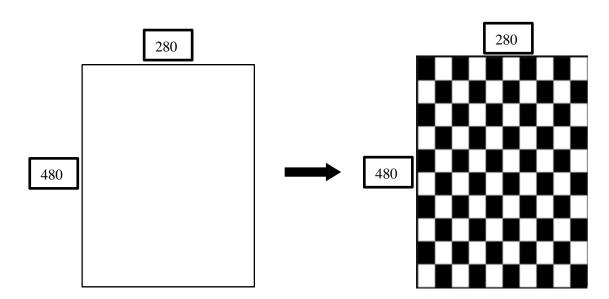
5-3) Panel Scan Directions

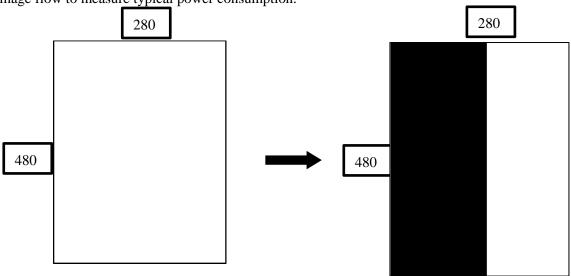
6. Electrical Characteristics

6-1) Absolute Maximum Ratings of panel only:

Parameter	Symbol	Rating	Unit
Digital/IO/Analog power	VDD	-0.3 to +5.5	V
Operating Temp. Range	Tot	0 to +55	°C
Storage Temperature	Tst	-25 to +70	°C

6-2) Panel DC characteristics


Symbol		Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDD		Logic supply voltage		2.4	3.3	3.6	V
VGH		Positive Gate driving voltage			20		v
VGL		Negative Gate driving voltage			-20		V
VSH		Positive source driving voltage			15		V
VSL		Negative source driving voltage			-15		V
VCOM_	DC	VCOM_DC output voltage			Adjusted		V
VIL		Low level input voltage	Digital input pins	0		0.2xVDD	v
VIH		High level input voltage	Digital input pins	0.8xVDD		VDD	V
Vон		High level output voltage	Digital input pins, IOH= 400 uA	0.8xVDD			V
Vol		Low level output voltage	Digital input pins, IOL=-400 uA	0		0.2xVDD	v
Rin		Pull-up/down impedance			200		ΚΩ
IMSTB		Module stand-by current	Stand-by mode		0.2		mA
I _{MDS}		Module deep sleep & Flash power down current	Deep sleep mode & Flash power down mode		1.0		uA
	Inc	Inrush Current			0.16		A
TYP	IMOPR	Module operating current			16		mA
pattern	P	Operation Power Dissipation	VDD=3.3V with DC-DC		53		mW
Heavy loading pattern	Inc	Inrush Current			0.18		A
	IMOPR	Module operating current			148		mA
	P	Operation Power Dissipation	VDD=3.3V with		488		mW


			DC-DC		
PSTBY	PSTBY	Standby Power Dissipation	VDD=3.3V	0.26	mW

- The maximum average Currents for power consumption and Max. Currents are measures using 50Hz waveform with heavy loading pattern transition:
- The Typical power consumption is measure using 50Hz waveform with following pattern transition:
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Waveshare.
- Vcom is recommended to be set in the range of assigned value $\pm 0.1 \text{ V}$

Note 6-1 Image flow to measure heavy loading power consumption.

Note 6-2 Image flow to measure typical power consumption.

6-3) Panel AC characteristics

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, $T_{OPR} = 25$ °C, CL=30pF

Table 12-1: Serial Peripheral Inter face Timing Characteristics

6.3.1 Write mode

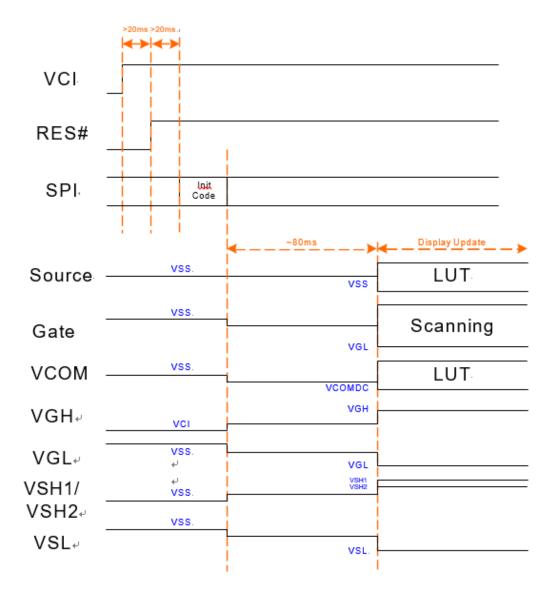
Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	20			ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	20			ns
t _{CSHIGH}	Time CS# has to remain high between two transfers	100			ns
tsclcyc	SCL cycle time	50			ns
tsclhigh	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
t_{SISU}	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

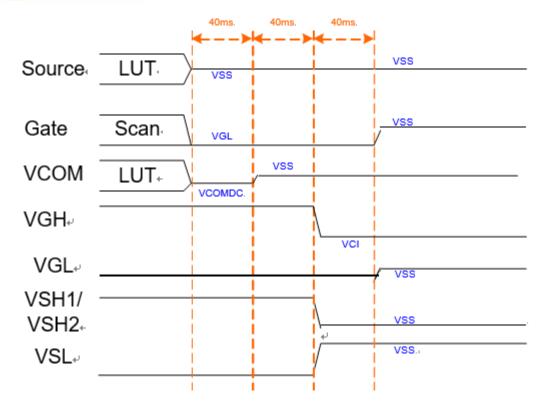
Symbol	Parameter	Min	Тур	Max	Unit
f_{SCL}	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcshigh	Time CS# has to remain high between two transfers	250			ns
tsclhigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
t_{SOSU}	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

6-4) Refresh rate

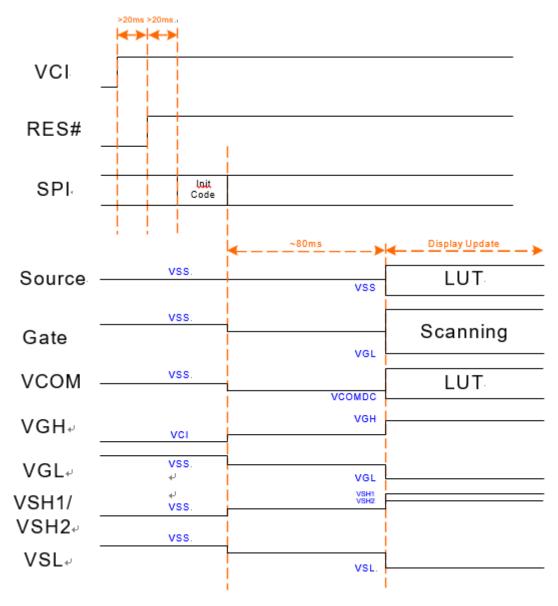

The module is applied at a maximum refresh rate of 50 Hz.

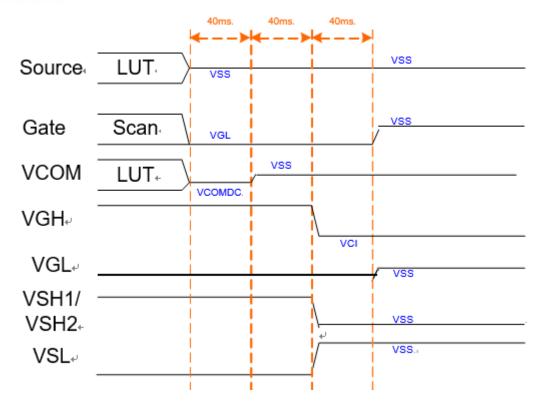
	Min	Max
Refresh Rate	-	50 Hz



6-5) Data transmission waveform

Display on sequence with softstart setting is shown in Figure




7. Power Sequence

In order to prevent IC fail in power on resetting, the power sequence must be followed as below.

Power on sequence

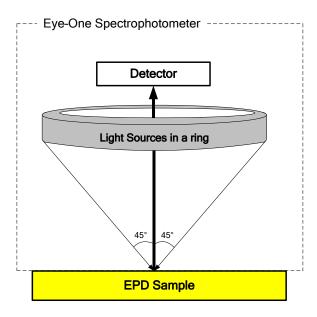
Power off sequence

8. **Optical Characteristics**

8-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.

 $T = 25^{\circ}C$


Symbol	Parameter	Conditions	Min	Typ.	Max	Unit	Note
R	Reflectance	White	35	45	-	%	Note 9-1
Gn	N _{th} Grey Level	-	-	DS+(WS- DS)×n/(m-1)	-	L*	-
CR	Contrast Ratio	-	10	16	-		-

WS: White state , DS: Dark state, Gray state from Dark to White :DS \cdot G1 \cdot G2... \cdot Gn... \cdot Gm-2 \cdot WS m:4 when 2 bits mode

Note 9-1: Luminance meter: Eye – One Pro Spectrophotometer

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd): CR = Rl / Rd

Reflection Ratio

The reflection ratio is expressed as:

$R = Reflectance Factor_{white board} x (L_{center} / L_{white board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. Handling, Safety and Environmental Requirements and Remark

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status

Product specification This data sheet contains formal product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

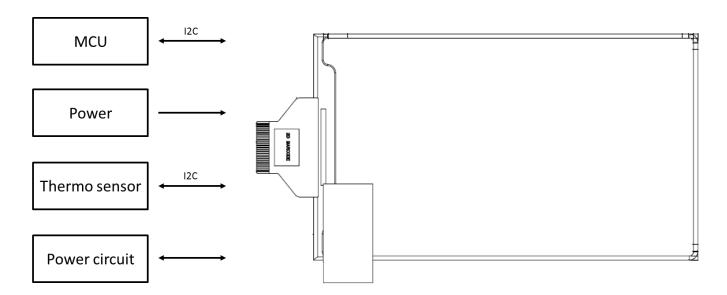
REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

10. Reliability Test

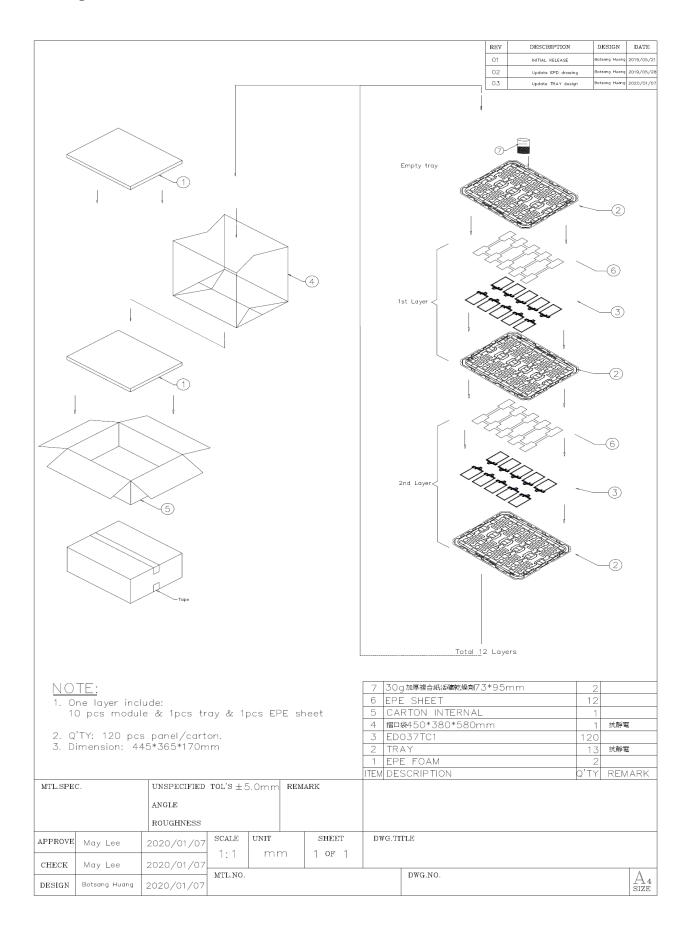
	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T = +60°C, RH = 35% for 240 hrs	IEC 60 068-2-2Be	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-1Ae	
3	High-Temperature Storage	T = +70°C, RH= 40% for 240 hrs Test in white pattern	IEC 60 068-2-2 Bb	
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-1Ab	
5	High-Temperature, High- Humidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068-2-78	
6	High Temperature, High- Humidity Storage	T = +60°C, RH=80% for 240 hrs Test in white pattern	IEC 60 068-2-78	
7	Temperature Cycle	-25°C→+70°C, 100 Cycles 30min 30min Test in white pattern	IEC 68-2-14 Nb	
8	Solar radiation test	765 W/m ² for 168hrs,40°C Test in white pattern	IEC60 068-2-5Sa	
9	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment	
10	Package Drop Impact	Drop from height of 100 cm on concrete surface. Drop sequence: 1 corner,3 edges,6 faces One drop for each.	Full packed for shipment	
11	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62180	

Actual EMC level to be measured on customer application


Note: The protective film must be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. (including: line defect, no image). All the cosmetic specification is judged before the reliability stress.



11.Block Diagram

12.Packing

