

Product Specifications

Customer	Standard			
Description	2.7" E-PAPER DISPLAY			
Model Name	2.7inch e-Paper V2			
Date	2022/10/10			
Revision	1.0			

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	Oct.10.2022	New Creation	ALL	

CONTENTS

1.	Over View	5
2.	Features	5
3.	Mechanical Specification	5
4.	Mechanical Drawing of EPD Module	6
5.	Input/output Pin Assignment	7
6.	Electrical Characteristics	8
6	.1 Absolute Maximum Rating	.8
6	.2 Panel DC Characteristics	8
6	.3 Panel AC Characteristics	10
	6.3.1 MCU Interface Selection	10
	6.3.2 MCU Serial Interface (4-wire SPI)	10
	6.3.3 MCU Serial Interface (3-wire SPI)	11
	6.3.4 Interface Timing	12
7.	Command Table	. 13
8.	Optical Specification	26
9.	Handling, Safety, and Environment Requirements	27
10.	Reliability Test	28

11.	Block Diagram	29
12.	Reference Circuit	30
14.	Typical Operating Sequence	31
	14.1 Normal Operation Flow	31
15.	Inspection condition	32
	15.1 Environment	32
	15.2 Illuminance	32
	15.3 Inspect method	32
	15.4 Display area	32
	15.5 Inspection standard	33
	15.5.1 Electric inspection standard	33
	15.5.2 Appearance inspection standard	34
16.	Packaging	.36
17.	Precautions	.37

1. Over View

This display is an Active Matrix Electrophoretic Display (AM EPD), with interfaceand a reference system design. The display is capable to display image at 1-bit white, black full display capabilities. The 2.7inch active area contains 264×176pixels. Themodule is a TFT-array driving electrophoresis display, with integrated circuits includinggate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT , VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label

(ESL) System.

2.Features

264×176 pixels display with touchscreen High cntrast High reflectance Ultra wide viewing angle Ultra low power consumption Pure reflective mode Bi-stable display Commercial temperature range Landscape portrait modes Hard-coat antiglare display surface Ultra Low current deep sleep mode On chip display RAM Waveform can stored in On-chip OTP or written by MCU Serial peripheral interface available On-chip oscillator On-chip booster and regulator control for generating VCOM, Gate and Source driving

voltage

I2C signal master interface to read external temperature sensor Built-in temperature sensor

Parameter	Unit	Remark	
Screen Size	2.7	Inch	
Display Resolution 264(H)×176(V)		Pixel	Dpi:117
Active Area 38.19×57.29		mm	
Pixel Pitch	0.217×0.217		
Pixel Configuration	Rectangle		
Outline Dimension	45.8 (H)×70.42(V) ×1.23(D)	mm	
Weight	TBD	g	

3.Mechanical Specifications

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	Ι	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	Р	Power Supply for the chip	
17	VSS	Р	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics 6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V _{ss}			-	0	-	V
Logic supply voltage	V _{CI}		VCI	2.2	3.0	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-		0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}	-		-	-	0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA		0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA			-	0.1 V _{CI}	V
Typical power	Ртур	$V_{CI}=3.0V$			TBD		mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V			0.003		mW
Typical operating current	Iopr_V _{CI}	$V_{CI}=3.0V$		-	TBD		mA
Full update time		25 °C			3		sec
Fast update time	-	25 °C			1.5		sec
Partial update time		25 °C			0.42		sec
Sleep mode current	Islp_V _{CI}	DC/ DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/ DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Waveshare.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1 : Interface pins assignment under different MCU interface

	Pin Name					
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Note : (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Table 6-2 : Control pins status of 4-wire SPI

Note: (1) L is connected to VSS and H is connected to VDDIO

(2) ↑ stands for rising edge of signal

(3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1 : Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS # is pulled low, the first byte sent is command byte, D/C# is pulled low. After com mand byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pu lled high. An 8-bit data will be shifted out on every clock falling edge. The serial da ta SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 6-2 : Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3	: Control	pins status	s of 3-wire SPI
-----------	-----------	-------------	-----------------

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	Ť	Data bit	Tie LOW	L

Note: (1) L is connected to VSS and H is connected to VDDIO

Figure 6-3 : Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command by te, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1.After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 6-4 : Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)	(H)	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60		-	ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	65	620	523	ns
tсsніgн	Time CS# has to remain high between two transfers	100			ns
t _{SCLHIGH}	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	-	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	- 100	1.00	ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscl	SCL frequency (Read Mode)	-	(12) (12)	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	1	1	ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	50	275	8 7 8	ns
t _{cshigh}	Time CS# has to remain high between two transfers	250	-	2 4 2	ns
tsclhigh	Part of the clock period where SCL has to remain high	180	-	1	ns
tscllow	Part of the clock period where SCL has to remain low	180	200	35	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0	(17)	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. Command Table

_		d Tal						i and	101101	() December ()	Lesson and the second se	1			
W#		Hex		D6	D5	D4	D3	D2	D1	DO	Command	Descripti			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao], 296 MU	
0	1		0	0	0	0	0	0	0	A ₈]	MUX Gate	e lines se	tting as (A	[8:0] + 1)
0	1		0	0	0	0	0	0 B2	0 B1	As Bo		B [2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output see GD=1, G1 is the output see B[1]: SM Change s SM=0 [PC G0, G1, G interlaced SM=1,	2000 [POR nning seq DR], 1st gate o quence is canning o DR], 52, G32]. uence and	direction nnel, gate 2, G3, nnel, gate 33, G2, te driver. d right ga
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage		can from	n from G0 G295 to G	
)	1		0	0	0	A4	A ₃	A ₂	A ₁	Ao	Control	A[4:0] = 0	0h [POR]		
	50				2505	101203	00000	00008-1	1252.8					OV to 20V	
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10 10.5	0Eh	15.5
												04h 05h	10.5	0Fh 10h	16 16.5
												05h	11.5	10n 11h	10.5
													11.5		
												07h		12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
										1		0Ah	13.5	17h	20
													10000		
												0Bh 0Ch	14 14.5	Other	NA

A CONTRACTOR	D/C#	d Tal Hex	D7	D6	D5	D4	D3	D2	D1	DO	Comma	nd		Description
0	0	04	0	0	0	0	0	1	0	0	Source I	6516/2	voltage	Set Source driving voltage
0	1		A7	A	A ₅	A4	A ₃	A ₂	A1	Ao	Control	-	_	A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B5	B ₄	B ₃	B ₂	B ₁	Bo				B [7:0] = A8h [POR], VSH2 at 5V.
0	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C1	Co	1			C[7:0] = 32h [POR], VSL at -15V Remark: VSH1>=VSH2
A[7]	/B[7]	= 1.							7]/B[7).			C[7] = 0,
VSH	-11/VS	SH2	/oltag	je se	tting	from	2.4V	VS			voltage	setting	from 9V	
	B[7:0]	VSH	1/VSH2	A/E	8[7:0]	VSH1	/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH2	2 C[7:0] VSL
	8Eh 8Fh		2.4		Fh	26.3	.7		23h 24h		9	3Ch 3Dh	14	0Ah -5
	90h	-	2.5	-	in 11	1.25	.0	-	24n 25h	+	9.2 9.4	3Dh 3Eh	14.2 14.4	0Ch -5.5
_	91h		2.7	-	l2h		6		26h		9.6	3Fh	14.6	0Eh -6 10h -6.5
	92h	-	2.8 2.9		13h 14h		.1		27h	-	9.8	40h	14.8 15	12h -7
_	93h 94h		3	2 2	14n 15h	12.3	.2		28h 29h		10 10.2	41h 42h	10	14h -7.5
	95h	1	3.1	В	l6h	6	.4	5	2Ah		10.4	43h	15.4	16h -8
_	96h 97h	1.13	3.2 3.3		7h 18h	22.5	.5		2Bh 2Ch		10.6	44h 45h	15.6 15.8	18h -8.5
	97h 98h		3.3 3.4		18h 19h	100	.6		2Ch 2Dh	-	10.8	40n 46h	15.8	1Ah -9 1Ch -9.5
	99h		3.5	В	Ah	6	.8		2Eh		11.2	47h	16.2	1Cn -9.5 1Eh -10
	9Ah		3.6	-	Bh		.9		2Fh		11.4	48h	16.4	20h -10.5
	9Bh 9Ch	-	3.7 3.8	-	Ch Dh		7		30h 31h		11.6 11.8	49h 4Ah	16.6 16.8	22h -11
i:	9Dh	-	3.9		Eh	7	.2		32h		12	4Bh	17	24h -11.5
_	9Eh	-	4	1.1	IFh		.3	-	33h		12.2	Other	NA	26h -12 28h -12.5
_	9Fh A0h		4.1		0h 1h		.4		34h 35h	-	12.4			2Ah -13
_	A1h		4.3		2h		.6	2	36h		12.8			2Ch -13.5
1.12	A2h	1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	4.4	141	3h		.7	1	37h	_	13			2Eh -14
	A3h A4h		4.5 4.6		24h 25h		.8		38h 39h		13.2			30h -14.5
_	A5h	_	4.7		6h		.5 B	-	3Ah	-	13.6			32h -15
_	A6h		4.8		7h		.1		3Bh		13.8			34h -15.5 36h -16
	A7h A8h		4.9 5	-	8h 9h		.2							38h -16.5
	A9h		5.1	-	Ah		.4							3Ah -17
	AAh		5.2	10 M	Bh		.5							Other NA
_	ABh		5.3 5.4	1. 1.1	Ch		.6							
	ADh		5.5	1.1	Eh		.8							
1	AEh		5.6	0	ther	N	A							
0	0	08	0	0	0	0	1	0	0	0	Initial Co	nda Sat	ting	Program Initial Code Setting
											OTP Pro			
											A DES BARRIES CALVE			The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
0	0	09	0	0	0	0	1	0	0	1			for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A	Code Se			Selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B1	Bo	1			A[7:0] ~ D[7:0]: Reserved
0	1		C7	1 022672	C ₅	C ₄	C ₃	1000	200011		-			Details refer to Application Notes of Initia
1944 - 1945 1947 - 1947 1947 - 1947				C ₆		Low March 1		C ₂	C ₁	-	-			Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
		0A	0	0	0	0	1	0	1	0	Road R	agistor	for Initial	Read Register for Initial Code Setting

Concernance of the second		d Tal	ble						<i></i>		w		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		with Phase 1, Phase 2 and Phase 3 rrent and duration setting.
0	1		1	A ₆	A ₅	A4	A ₃	A ₂	A1	Ao	Control		
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			tart setting for Phase1 h [POR]
0	1		1	C ₆	C 5	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] -> Soft st	tart setting for Phase2
0	1		0	0	D5	D4	D ₃	D2	D1	Do			h [POR] tart setting for Phase3
												= 96h	[POR]
												D[7:0] -> Durati = 0Fh	on setting [POR]
													ption of each byte: [6:0] / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	urantaur
												0011	NA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:0]: du D[5:4]: di D[3:2]: di	ration setting of phase uration setting of phase 3 uration setting of phase 2 uration setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
0	0	10	0	0	0	1	0	0	0		Deep Sleep mode		o mode Control:
0	1		0	0	0	0	0	0	A1	Ao			Description
													Normal Mode [POR] Enter Deep Sleep Mode 1
													Enter Deep Sleep Mode 1 Enter Deep Sleep Mode 2
												2	command initiated, the chip w
												enter Deep keep outpu Remark: To Exit Dee	Sleep Mode, BUSY pad will t high. ep Sleep mode, User require
													RESET to the driver

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	0	11	0	0	0	1	0	0 A2	0 A1	1 A0	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X decrement, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A6	A5	A4	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

		d Ta										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	- 205	0	0	0	0	0	A ₂	A ₁	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V
×	12					Ň	× .	1.2	10.00			A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
0 0	0	18	0 A7	0 A6	0 A5	1 A4	1 A3	0 A2	0 A1	0 A ₀	Temperature Sensor Control	The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A7	A ₆	A5	A4	A ₃	A ₂	A1	Ao	Control (Write to temperature register)	A[7:0] = 7Fh [POR]
											tomporataro regiotor)	
0	0	40	0	0	0			0		1.22	T	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor Control (Read from	Read from temperature register.
1	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	A1	Ao	temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor.
0	1		B7	B6	B ₅	B4	B ₃	B ₂	B1	Bo	to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR],
0	1		C 7	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	Serisor)	C[7:0] = 00h [POR],
25523			17560			0.57.050			0.0776141			
												A[7:6]
												A[7:6] Select no of byte to be sent
												00 Address + pointer
												01 Address + pointer + 1st parameter
												10 Address + pointer + 1st parameter + 2nd pointer
												11 Address
												A[5:0] - Pointer Setting
												B[7:0] – 1 st parameter
												C[7:0] - 2 nd parameter
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												After this command initiated, Write
												Command to external temperature
												sensor starts. BUSY pad will output high
												during operation.
	_		~									
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]
1	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao		

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A7	A	A5	A4	A ₃	A2	Aı	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
0	1		B7	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content as 0 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 0 Available Source from S0 to S175 1 Available Source from S8 to S167
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	 After this command, data entries will be written into the BW RAM until another command is written. Address pointers wi advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0

	man D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option:
0	1	22	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Activation A[7:0]= FFh (POR)
												Operating sequence Paramete (In Hex)
												Enable clock signal 80
												Disable clock signal 01
												Enable clock signal
												→ Enable Analog C0
												Disable Analog 03
												Disable clock signal
												Enable clock signal → Load LUT with DISPLAY Mode 1 91 → Disable clock signal
												Enable clock signal → Load LUT with DISPLAY Mode 2 99 → Disable clock signal
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 2 Disable clock signal
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 C7 → Disable Analog → Disable OSC
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 CF → Disable Analog → Disable OSC
												Enable clock signal > Enable Analog > Load temperature value > DISPLAY with DISPLAY Mode 1 > Disable Analog > Disable OSC
	n											Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2. → Disable Analog → Disable OSC
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers wi advance accordingly.
							1					For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1 st byte of data read is dummy data.

	man	a statement of the stat							-	1	1				
./W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descript	tion		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	for durat VCOM v The sen register The com ANALOO Refer to	tion defined value. sed VCOM mmand requ GEN=1 Register 0 ad will outp	d in 29h t I voltage uired CLH x22 for d	
0		00	0	•		0		0	0		VOOLO D.	0			
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration		mode and		ring VCOM
0	1		0	1	0	0	A3	A ₂	A1	Ao		A[3:0] =	9h, duratio	on = 10s.	3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program	NCOM re	gister into	o OTP
									í			Refer to	nmand requ Register 0 ad will outp n.	x22 for d	etail.
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM regist	er from M	ICU interface
0	1		A7	A6	As	A4	Аз	A ₂	A1	Ao	and when here it is a state of the second		00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												34h	-1.3	74h	-2.9
												3Ch	-1.4	740 78h	-2.9
												40h	-1.6	Other	-3 NA
							-					4011	-1.0	Oulei	TN/N

	man				1	1.000		2017	1	12/22	la	m
122.	D/C#	120147-0	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for Display Option	Read Register for Display Option:
1	1	-	A7	A ₆	A ₅	A4	A ₃	A ₂	A1	Ao	Diopidy option	A[7:0]: VCOM OTP Selection
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		(Command 0x37, Byte A)
1	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0]: VCOM Register
1	1	_	D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀		(Command 0x2C)
1	1	-	E7	E ₆	E ₅	E4	E ₃	E ₂	E1	Eo	-	
1	1		F7	F ₆	F ₅ G ₅	F ₄ G ₄	F ₃ G ₃	F ₂ G ₂	F ₁ G ₁	F ₀ G ₀		C[7:0]~G[7:0]: Display Mode (Command 0x37, Byte B to Byte F)
1	1		G7 H7	H ₆	H ₅	H ₄	H ₃	H ₂		H ₀	-	[5 bytes]
1	1		17 17	16	П5 I5	H4	3	1 ₂		10		
1	1		J7	Je	J ₅	14 J4	13 J3	12 J2		Jo		H[7:0]~K[7:0]: Waveform Version
1	1		K7	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	Ko		(Command 0x37, Byte G to Byte J) [4 bytes]
			N7	N6	N 5	r \4	N 3	N2	N1	N0		[403(00)]
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1	6- 1	A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	A		A[7:0]]~J[7:0]: UserID (R38, Byte A and
1	1		B ₇	B ₆	B5	B ₄	B ₃	B ₂	B ₁	Bo	-	Byte J) [10 bytes]
1	1	-	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		
1	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
1	1		G7	G ₆	G ₅	G ₄	G ₃	G ₂	G1	Go	-	
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		
1	1	-	17	l6	15	4	13	12	11	lo		
1	1	· · · ·	J7	Je	J ₅	J ₄	J ₃	J ₂	J1	Jo	-	
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	As	A4	0	0	Aı	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

	man			-						100	Command	Description
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		[227 bytes], which contains the content o
0	1		B7	B ₆	B ₅	B4	B ₃	B ₂	Bı	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR and XON[nXY]
0	1			1		:	4		1			Refer to Session 6.7 WAVEFORM
0	1		(3.1)		-202	٠		10	×	(10)		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
U	U	34	U	U			U		U	U		For details, please refer to SSD1680A application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A15	A14	A13	A12	A11	A10	A9	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A6	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1	51	A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1	-	B ₇	B ₆	B5	B ₄	B ₃	B ₂	B1	Bo		0: Default [POR]
0	1		C7	C ₆	C ₅	C4	C ₃	C ₂	C1	Co		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F2	F1	Fo		D[7:0] Display Mode for WS[23:16] 0: Display Mode 1
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		
0	1		17	6	15	14	13	12	1	lo		F[6]: Ping-Pong for Display Mode 2 0: RAM Ping-Pong disable [POR]
0	1		J7	J ₆	J ₅	J4	J ₃	J ₂	J1	Jo		G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppor for Display Mode 1

R/W#	D/C#	d Ta Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Remarks: A	[7:0]~J[7:0] can be stored in
0	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		OTP	
0	1		D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do			
0	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	Eo			
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	-		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G2	G1	Go			
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-		
0	1	-	17	16	15	14	13	12	11	lo	-		
10000											-		
0	1		J ₇	J ₆	J ₅	J4	J ₃	J ₂	J ₁	Jo			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP progra	
0	1		0	0	0	0	0	0	A ₁	A			Normal Mode [POR]
													Internal generated OTP
												programmin	ig voltage
												: User is red	quired to EXACTLY follow the
												reference c	ode sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select bord	er waveform for VBD
0	1		A7	A	A ₅	A ₄	0	0	A1	Ao			h [POR], set VBD as HIZ.
- I			1.20	Control of	1000	00.00	1.1		5.00 C	100.000			ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
												01	Defined in A[2] and A[1:0] Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												1000 - 000 - 000	
													evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1 VSL
												10	VSL VSH2
													VOIIZ
												A [1:0] GS 1	Fransition setting for VBD
												VBD Level S	Selection:
													; 01b: VSH1;
												10b: VSL; 1	
												A[1:0] 00	VBD Transition LUT0
												00	LUT1
												10	LUT2
												11	LUT3
										_		1963 1	
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for L	UT end
0	1		A7	A ₆	A ₅	A4	A ₃	A ₂	A1	Ao		Data bytes :	should be set for this
2	83		2223			88392	5.025	82.00	1992				r programmed into Waveforn
												setting.	500 M
													mal. Irce output level keep
1											1	1 U/U SOU	

	man				Lesson					1.000	I= .	-					
/W#	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti					
0	0	41	0	0	0	0	0	0	0	1 A ₀	Read RAM Option	Read RAM Option A[0]= 0 [POR] 0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26					
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify th	ne start/en	d position	s of the		
0	1	44	0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A	Start / End position		ddress in				
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			unit for RA				
U		11	U	U	Do	D4	D3	D2	D1	DO			A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h				
0	0	45	0	4	0		0		0		Out Daw V and dawn	0					
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address Start / End position		ne start/en				
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	-	window address in the Y direction by a address unit for RAM					
0	1		0	0	0	0	0	0	0	A ₈	-						
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[8:0]: YSA[8:0], YStart, POR = 000					
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YEA[8:0], YEnd, POR = 127h					
0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for Regular Pattern	Auto Write RED RAM for Regular Patter A[7:0] = 00h [POR]					
	2.4				10000000			0.000				A[7]: The 1st step value, P0 A[6:4]: Step Height, POR= Step of alter RAM in Y-dire according to Gate		POR= 00	0		
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												Step of al	64 ep Width, ter RAM ir to Source	X-directi			
												A[2:0]	Width	A[2:0]	Width		
												000	8	100	128		
												001 16 101 1		176			
														NA			
												011	64	111	NA		
												BUSY partition	d will outp	ut high du	ring		

	man	and the second s		-	1.00	1.122.02.01		100	1000	12.02	0													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti												
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for			M for Reg	ular Patteri									
0	1		A ₇	A ₆	A ₅	A 4	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0	0h [POR]											
												A[6:4]: St	A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction											
												according	to Gate											
												A[6:4]	Height	A[6:4]	Height									
												000	8	100	128									
												001	16	101	256									
												010	32	110	296									
												011	64	111	NA									
												A[2:0]: Step Step of alter according to A[2:0]	ter RAM ir	X-direction										
												000	8	100	128									
													allocate and allocate and allocate and allocate and allocate and all all all all all all all all all al	entraction a										
												001	16 32	101 110	176 NA									
												010	64	111	NA									
													04	111	NA									
																				During operation, BUSY pad will outp high.				
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AMX									
0	1		0	0	A ₅	A4	Аз	A ₂	Aı	Ao	counter	Make initial settings for the RAM X address in the address counter (AC) A[5:0]: 00h [POR].												
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AMY									
0	1		A7	AG	A ₅	A ₄	A3	A ₂	A1	Ao	counter	address in	n the addr	ess count										
0	1		0	0	0	0	0	0	0	A ₈	-	A[8:0]: 00	0h [POR].											
0	0	7F	0	1	1	1	1	1	1	1	NOP				ommand; i									
											module. However	have any e it can be u emory Writ ds.	ised to ter	minate										

8.Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes:

8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

[
	Warning								
The display glass may break	when it is dropped or bumped on a hard surface.								
Handle with care. Should the display break, do not touch the electrophoretic									
material. In case of contact with electrophoretic material, wash with water and									
soap.									
Caution									
The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.									
Disassembling the display module can cause permanent damage and invalidates the warranty agreements.									
Observe general precautions that are common to handling delicate electronic									
components. The glass can break and front surfaces can easily be damaged.									
Moreover the display is sensitive	Moreover the display is sensitive to static electricity and other rough								
environmental conditions.									
	Data sheet status								
Product specification	This data sheet contains final product specifications.								
	Limiting values								
Limiting values given are in a System (IEC	ccordance with the Absolute Maximum Rating								
	re of the limiting values may cause permanent								
	are stress ratings only and operation of the								
_	er conditions above those given in the								
-	e specification is not implied. Exposure to limiting								
values for extended periods n									
· ·	Application information								
	Where application information is given, it is advisory and does not form part of								

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70° C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50° C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note:

Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Reference Circuit

14.Typical Operating Sequence 14.1 Normal Operation Flow

15.Inspection condition 15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH

15.2 Illuminance

 $Brightness: 1200 {\sim} 1500 LUX; distance: 20{-}30 CM; Angle: Relate \ 30^{\circ} surround.$

15.3 Inspection method

15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	$D \le 0.25 \text{mm}$, Allowed $0.25 \text{mm} < D \le 0.4 \text{mm} \cdot N \le 3$, and $D = 0.4 \text{mm} \cdot N \le 3$,	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm, W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

Defect NO. Item Standard Method Scope level B/W spots W /Bubble/ Visual 1 MI Zone A D = (L + W) / 2Foreign bodies/ inspection Dents D≤0.25mm, Allowed 0.25mm < D≤0.4mm, N≤3 D>0.4mm, Not Allow Zone A 2 Glass crack Not Allow MA Zone B Visual / Microscope Zone A 3 Dirty Allowed if can be removed MI Zone B X≤3mm,Y≤0.5mmAnd without affecting the electrode is permissible Chips/Scratch/ Visual Zone A 4 MI Edge crown / Microscope Zone B $2mm \le X \text{ or } 2mm \le Y$ Not Allow Width Length W≤0.1mm,L≤5mm, No harm to the electrodes and N \leq 2 allow Visual Zone A 5 **TFT Cracks** MA / Microscope Zone B Not Allow Zone A / Dirty/ foreign Visual 6 Zone B Allowed if can be removed/ allow MI / Microscope body FPC broken/ 7 Visual MA Zone B Goldfingers / Microscope xidation/ scratch Not Allow

15.5.2 Appearance inspection standard

8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \leq 3$ mm, $Y \leq 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm _☉ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness \leq PS surface(With protect film): Full cover the IC; Shape: The width on the FPC \leq 0.5mm (Front) The width on the FPC \leq 1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.