Introduction

The ST-LINK/V2 is an in-circuit debugger/programmer for the STM8 and STM32 microcontroller families. The single wire interface module (SWIM) and JTAG/serial wire debugging (SWD) interfaces, facilitate communication with any STM8 or STM32 microcontroller located on an application board.

In addition to providing the same functionalities as the ST-LINK/V2, the ST-LINK/V2-ISOL features digital isolation between the PC and the target application board. It also withstands voltages of up to 2500 VRMS.

The USB full-speed interface allows communication with a PC and:

- STM8 devices via ST Visual Develop (STVD) or ST Visual Program (STVP) software (which are available from STMicroelectronics)
- STM32 devices via Atollic, IAR, Keil, and TASKING integrated development environments.

Table 1. Applicable tools

<table>
<thead>
<tr>
<th>Type</th>
<th>Part number</th>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development tools</td>
<td>ST-LINK/V2</td>
<td>ST-LINK/V2</td>
<td>In-circuit debugger/programmer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ST-LINK/V2-ISOL</td>
<td>In-circuit debugger/programmer with digital isolation</td>
</tr>
</tbody>
</table>

Figure 1. ST-LINK/V2 and ST-LINK/V2-ISOL
Contents

1 Features ... 5

2 Product contents ... 6

3 Hardware configuration ... 8
 3.1 Connection with STM8 applications 8
 3.1.1 Standard ERNI connection with SWIM flat ribbon 9
 3.1.2 Low-cost SWIM connection 10
 3.1.3 SWIM signals and connections 11
 3.2 Connection with STM32 applications 12
 3.3 ST-LINK/V2 status LEDs .. 14

4 Software configuration ... 15
 4.1 ST-Link/V2 firmware upgrade 15
 4.2 STM8 application development 15
 4.3 STM32 application development and Flash programming 15

5 Schematics ... 16

6 Revision history ... 18
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Applicable tools.</td>
<td>1</td>
</tr>
<tr>
<td>Table 2</td>
<td>SWIM flat ribbon connections for ST-LINK/V2</td>
<td>11</td>
</tr>
<tr>
<td>Table 3</td>
<td>SWIM low-cost cable connections for ST-LINK/V2-ISOL</td>
<td>11</td>
</tr>
<tr>
<td>Table 4</td>
<td>JTAG/SWD cable connections</td>
<td>12</td>
</tr>
<tr>
<td>Table 5</td>
<td>How third party toolchains support ST-LINK/V2</td>
<td>15</td>
</tr>
<tr>
<td>Table 6</td>
<td>Document revision history</td>
<td>18</td>
</tr>
</tbody>
</table>
List of figures

Figure 1. ST-LINK/V2 and ST-LINK/V2-ISOL .. 1
Figure 2. ST-LINK/V2 product contents .. 6
Figure 3. ST-LINK/V2-ISOL product contents ... 7
Figure 4. Connectors of the ST-LINK/V2 and ST-LINK/V2-ISOL 8
Figure 5. ERNI connection .. 9
Figure 6. Key detail on connectors ... 9
Figure 7. Low-cost connection .. 10
Figure 8. Target SWIM connector ... 11
Figure 9. JTAG and SWD connection ... 13
Figure 10. JTAG debugging flat ribbon layout .. 13
Figure 11. SWIM ST-LINK/V2 standard ERNI cable ... 16
Figure 12. SWIM ST-LINK/V2 low-cost cable .. 17
1 Features

- 5 V power supplied by a USB connector
- USB 2.0 full speed compatible interface
- USB standard A to mini B cable
- SWIM specific features
 - 1.65 V to 5.5 V application voltage supported on SWIM interface
 - SWIM low-speed and high-speed modes supported
 - SWIM programming speed rate: 9.7 Kbytes/s in low speed and 12.8 Kbytes/s in high speed
 - SWIM cable for connection to the application via an ERNI standard vertical (ref: 284697 or 214017) or horizontal (ref: 214012) connector
 - SWIM cable for connection to the application via a pin header or a 2.54 mm pitch connector
- JTAG/serial wire debugging (SWD) specific features
 - 1.65 V to 3.6 V application voltage supported on the JTAG/SWD interface and 5 V tolerant inputs
 - JTAG cable for connection to a standard JTAG 20-pin pitch 2.54 mm connector
 - Supports JTAG communication
 - Supports serial wire debug (SWD) and serial wire viewer (SWV) communication
- Direct firmware update feature supported (DFU)
- Status LED which blinks during communication with the PC
- 2500 VRMS high isolation voltage (ST-LINK/V2-ISOL only)
- Operating temperature 0 to 50 °C
2 Product contents

Figures *ST-LINK/V2 product contents* show the various cables delivered within the product. They include (from left to right in *Figure 2* and *Figure 3*):

- USB standard A to mini B cable (A)
- ST-LINK/V2 debugging and programming (B)
- SWIM low-cost connector (C)
- SWIM flat ribbon with a standard ERNI connector at one end (D)
- JTAG or SWD and SWV flat ribbon with a 20-pin connector (E)

Figure 2. ST-LINK/V2 product contents
Figure 3. ST-LINK/V2-ISOL product contents
3 Hardware configuration

The ST-LINK/V2 is designed around the STM32F103C8 device which incorporates the high-performance ARM® Cortex™-M3 core. It is available in a TQFP48 package.

As shown in Figure 4, the ST-LINK/V2 provides two connectors:

● an STM32 connector for the JTAG/SWD and SWV interface
● an STM8 connector for the SWIM interface

The ST-LINK/V2-ISOL provides one connector for the STM8 SWIM, STM32 JTAG/SWD and SWV interfaces.

Figure 4. Connectors of the ST-LINK/V2 and ST-LINK/V2-ISOL

1. A = STM32 JTAG and SWD target connector
2. B = STM8 SWIM target connector
3. C = STM8 SWIM, STM32 JTAG and SWD target connector
4. D = Communication activity LED

3.1 Connection with STM8 applications

For STM8 developments, the ST-LINK/V2 can be connected to the target board by two different cables, depending on the connector available on the application board.

These cables are:

● SWIM flat ribbon with a standard ERNI connector at one end
● SWIM cable with two 4-pin, 2.54 mm connector or SWIM separate-wires cable
3.1.1 Standard ERNI connection with SWIM flat ribbon

Figure 5 shows how to connect the ST-LINK/V2 if a standard ERNI 4-pin SWIM connector is present on the application board.

Figure 5. ERNI connection

1. A = Target application board with ERNI connector
2. B = Wire cable with ERNI connector at one end
3. C = STM8 SWIM target connector
4. See Figure 11: SWIM ST-LINK/V2 standard ERNI cable.

Figure 6 shows that pin 16 is missing on the ST-LINK/V2-ISOL target connector. This missing pin is used as a safety key on the cable connector to guarantee connection of the SWIM cable in the correct position on the target connector even pins, used for both SWIM and JTAG cables.

Figure 6. Key detail on connectors
3.1.2 Low-cost SWIM connection

Figure 7 shows how to connect the ST-LINK/V2 if a 4-pin, 2.54 mm, low-cost SWIM connector is present on the application board.

Figure 7. Low-cost connection

1. A = Target application board with 4-pin, 2.54 mm, low-cost connector
2. B = Wire cable with a 4-pin connector or separate-wires cable
3. C = STM8 SWIM target connector
4. See *Figure 12: SWIM ST-LINK/V2 low-cost cable*
3.1.3 SWIM signals and connections

Table 2 summarizes the signal names, functions, and target connection signals using the wire cable with a 4-pin connector.

Table 2. SWIM flat ribbon connections for ST-LINK/V2

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Name</th>
<th>Function</th>
<th>Target connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Target VCC(^{(1)})</td>
<td>MCU VCC</td>
</tr>
<tr>
<td>2</td>
<td>DATA</td>
<td>SWIM</td>
<td>MCU SWIM pin</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>GROUND</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>RESET</td>
<td>RESET</td>
<td>MCU RESET pin</td>
</tr>
</tbody>
</table>

1. The power supply from the application board is connected to the ST-LINK/V2 debugging and programming board to ensure signal compatibility between both boards.

Table 3 summarizes the signal names, functions, and target connection signals using the separate-wires cable.

As the SWIM separate-wires cable has independent connectors for all pins on one side, it is possible to connect the ST-LINK/V2-ISOL to an application board without a standard SWIM connector. On this flat ribbon, all signals are referenced by a specific color and a label to ease the connection on target.

Table 3. SWIM low-cost cable connections for ST-LINK/V2-ISOL

<table>
<thead>
<tr>
<th>Color</th>
<th>Cable pin name</th>
<th>Function</th>
<th>Target connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>TVCC</td>
<td>Target VCC(^{(1)})</td>
<td>MCU VCC</td>
</tr>
<tr>
<td>Green</td>
<td>UART-RX</td>
<td>Unused</td>
<td>Reserved (^{(2)}) (not connected on the target board)</td>
</tr>
<tr>
<td>Blue</td>
<td>UART-TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>BOOT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>SWIM</td>
<td>SWIM</td>
<td>MCU SWIM pin</td>
</tr>
<tr>
<td>Black</td>
<td>GND</td>
<td>GROUND</td>
<td>GND</td>
</tr>
<tr>
<td>White</td>
<td>SWIM-RST</td>
<td>RESET</td>
<td>MCU RESET pin</td>
</tr>
</tbody>
</table>

1. The power supply from the application board is connected to the ST-LINK/V2 debugging and programming board to ensure signal compatibility between both boards.

2. BOOT0, UART-TX and UART-RX are reserved for future developments.
3.2 Connection with STM32 applications

For STM32 developments, the ST-LINK/V2 needs to be connected to the application using the standard 20-pin JTAG flat ribbon provided.

Table 4 summarizes the signals names, functions, and target connection signals of the standard 20-pin JTAG flat ribbon.

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>ST-LINK/V2 connector (CN3)</th>
<th>ST-LINK/V2 function</th>
<th>Target connection (JTAG)</th>
<th>Target connection (SWD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRST</td>
<td>JTAG TRST</td>
<td>JNTRST</td>
<td>GND(2)</td>
</tr>
<tr>
<td>2</td>
<td>TRST</td>
<td>JTAG TRST</td>
<td>JNTRST</td>
<td>GND(2)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>4</td>
<td>TDI</td>
<td>JTAG TDO</td>
<td>JTDI</td>
<td>GND(2)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>6</td>
<td>TMS_SWdio</td>
<td>JTAG TMS, SW IO</td>
<td>JTMS</td>
<td>SWDIO</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>9</td>
<td>TCK_SWCLK</td>
<td>JTAG TCK, SW CLK</td>
<td>JTCK</td>
<td>SWCLK</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>Not connected</td>
<td>Not connected</td>
<td>Not connected</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>13</td>
<td>TDO_SWO</td>
<td>JTAG TDI, SWO</td>
<td>JTDI</td>
<td>TRACESWO(4)</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>15</td>
<td>NRST</td>
<td>NRST</td>
<td>NRST</td>
<td>NRST</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>17</td>
<td>NC</td>
<td>Not connected</td>
<td>Not connected</td>
<td>Not connected</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
<tr>
<td>19</td>
<td>VDD</td>
<td>VDD (3.3V)(5)</td>
<td>Not connected</td>
<td>Not connected</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>GND</td>
<td>GND(3)</td>
<td>GND(3)</td>
</tr>
</tbody>
</table>

1. The power supply from the application board is connected to the ST-LINK/V2 debugging and programming board to ensure signal compatibility between both boards.
2. Connect to GND for noise reduction on the ribbon.
3. At least one of this pin must be connected to the ground for correct behavior (connecting all of them is recommended).
4. Optional: for Serial Wire Viewer (SWV) trace.
5. Available on ST-LINK/V2 only and not connected on ST-LINK/V2/OPTO.
Figure 9 shows how to connect the ST-LINK/V2 to a target using the JTAG cable.

Figure 9. JTAG and SWD connection

1. A = Target application board with JTAG connector
2. B = JTAG/SWD 20-wire flat cable
3. C = STM32 JTAG and SWD target connector

The reference of the connector needed on the target application board is:
2x10C header wrapping 2x40C H3/9.5 (pitch 2.54) - HED20 SCOTT PHSD80.

Figure 10. JTAG debugging flat ribbon layout

Note: For low cost applications or when the standard 20 pins pitch 2.54mm connector footprint is too big, it is possible to implement the Tag-Connect solution to save cost and space on the application board. The Tag-Connect adapter and cable provide a simple reliable means of connecting ST-LINK/V2 or ST-LINK/V2-ISOL to your PCB without requiring a mating connector.
component on application PCB. For more details on this solution and application PCB footprint information, please visit www.Tag-Connect.com.

The references of components compatible with JTAG and SWD interfaces are:
 a) TC2050-ARM2010 adapter (20pins to 10pins interface board)
 b) TC2050-IDC or TC2050-IDC-NL (No Legs) (10pins cable)
 c) TC2050-CLIP retaining clip for use with TC2050-IDC-NL (optional)

3.3 ST-LINK/V2 status LEDs

The LED labeled ‘COM’ on top of the ST-LINK/V2 shows the ST-LINK/V2 status (whatever the connection type).

When the:
 ● LED is blinking RED: the first USB enumeration with the PC is taking place.
 ● LED is RED: communication between the PC and ST-LINK/V2 is established (end of enumeration).
 ● LED is blinking GREEN/RED: data are being exchanged between the target and the PC.
 ● LED is GREEN: the last communication has been successful.
 ● LED is ORANGE: ST-LINK/V2 communication with the target has failed.
4 Software configuration

4.1 ST-Link/V2 firmware upgrade

The ST-Link/V2 embeds a firmware upgrade mechanism for in-situ upgrade through the USB port. As the firmware might evolve during the whole life of the ST-Link/V2 product (new functionality, bug fixes, support for new microcontroller families …), it is recommended to visit www.st.com/stlinkv2 periodically in order to stay up-to-date with the latest firmware version.

4.2 STM8 application development

Please refer to ST toolset Pack24 with Patch 1 or more recent, which includes ST Visual Develop (STVD) and ST Visual Programmer (STVP).

4.3 STM32 application development and Flash programming

Third party toolchains, Atollic TrueSTUDIO, IAR EWARM, Keil MDK-ARM, and TASKING VX-toolset support ST-LINK/V2 according to the versions given in Table 5 or the most recent version available.

Table 5. How third party toolchains support ST-LINK/V2

<table>
<thead>
<tr>
<th>Third party</th>
<th>Toolchain</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atollic</td>
<td>TrueSTUDIO</td>
<td>2.1</td>
</tr>
<tr>
<td>IAR</td>
<td>EWARM</td>
<td>6.20</td>
</tr>
<tr>
<td>Keil</td>
<td>MDK-ARM</td>
<td>4.20</td>
</tr>
<tr>
<td>TASKING</td>
<td>VX-toolset for ARM Cortex-M</td>
<td>4.0.1</td>
</tr>
</tbody>
</table>

The ST-LINK/V2 requires a dedicated USB driver. If the toolset installed it automatically, file stlink_winusb.inf is installed in <WINDIR>/inf (where <WINDIR> is typically C:/Windows).

If the toolset setup did not install it automatically, the driver can be found on www.st.com:
2. In the search tab, part number field, look for ST-Link/V2.
3. Click on the Generic Part Number column’s hyperlink to ST-Link/V2.
4. In the Design support tab, SW drivers section, click on the icon to download stlink_v2_usbdriver.zip.
5. Unzip and run ST-Link_V2_USBdriver.exe.

For more information on third party tools, please visit:
● www.atollic.com
● www.iar.com
● www.keil.com
● www.tasking.com
Figure 11. SWIM ST-LINK/V2 standard ERNI cable

1. Legend for pin descriptions:
 - **VDD** = Target voltage sense
 - **DATA** = SWIM DATA line between target and debug tool
 - **GND** = Ground voltage
 - **RESET** = Target system reset

Note: connector located on the edge of the board

Note: Black wire location

Low cost female connector 02 201 3047

Cable length 100mm

ST-LINK/V2 board

ST-LINK/V2 male connector 02 201 3047

USB CN3

USB CN4

1 - VDD
2 - DATA
3 - GND
4 - RESET
Figure 12. SWIM ST-LINK/V2 low-cost cable

1. Legend for pin descriptions:
 - VDD = Target voltage sense
 - DATA = SWIM DATA line between target and debug tool
 - GND = Ground voltage
 - RESET = Target system reset
6 Revision history

Table 6. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-Apr-2011</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
| 03-Jun-2011 | 2 | Table 2: SWIM flat ribbon connections for ST-LINK/V2: added footnote 1 to the function “Target VCC”.
Table 4: JTAG/SWD cable connections: added footnote to the function “Target VCC”.
Table 5: How third party toolchains support ST-LINK/V2: updated the “Versions” of IAR and Keil. |
| 19-Aug-2011 | 3 | Added USB driver details to Section 4.3. |
| 11-May-2012 | 4 | Added SWD and SWV to JTAG connection features. Modified Table 4: JTAG/SWD cable connections. |
| 13-Sep-2012 | 5 | Added ST-LINK/V2-ISOL order code. Updated Section 4.1: STM8 application development on page 15
Added Note 5. in Table 4.
Added Note “For low cost applications...” before Section 3.3: ST-LINK/V2 status LEDs on page 14 |
| 18-Oct-2012 | 6 | Added Section 4.1: ST-Link/V2 firmware upgrade on page 15. |