

SMD356C

User Manual

OVERVIEW

The SMD356C is a three-phase motor driver for hybrid stepper motors, supports 16 grades setting for both drive current and stepping subdivision, resolution up to 12000S/R. It is widely used in CNC equipment, sculpturing machine, cutting machine,

etc.

FEATURES

- Wide range voltage input (DC 24V~60V)
- 16 grades stepping subdivision setting, resolution up to 12000S/R
- 16 grades drive current setting, adjustable between 1.2A/Phase and 6.0A/Phase
- Supports three control modes: common cathode, common anode, and differential
- Supports alerts for undervoltage, overvoltage, overheat, overcurrent
- Supports phase memory when power down
- Optical isolation for both I/O signal and input signal
- When the stepping pulse stops over 100ms, coil current will be halved automatically
- Comes with development resources and manual (examples for Raspberry Pi,

STM32, Arduino)

SPECIFICATIONS

- Operating voltage: DC 24V ~ 80V
- Signal voltage: 4.2V ~ 24V
- Drive current: 0.5A ~ 5A
- Signal frequency: ≤150KHz
- Control mode: common cathode, common anode, and differential

CONTENT

Overview1
Features1
Specifications
Hardware4
Pinout4
Subdivision5
Microsteppering subdivision5
Current subdivision7
Use guides
Download demo codes8
Connect stepper motors
RaspberryPi examples9
Copy examples to Raspberry Pi9
Libraries Installation10
Hardware connection11
Running deme code12
STM32 example13
Hardware connection13
FAQ15

HARDWARE

PINOUT

There are two sets of sockets and DIP switches.

PIN	Description
PU+	Optical isolation positive port of pulse signals
PU-	Optical isolation negative port of pulse signals
DR+	Optical isolation positive port of direction signals
DR-	Optical isolation negative port of direction signals
MF+	Optical isolation positive port of motor-enable signals
MF-	Optical isolation negative port of motor-enable signals
U	U port of three-phase stepper motor
V	V port of three-phase stepper motor
W	W port of three-phase stepper motor

NC	Not connect
DC+	24~80V Power input
DC-	Ground

PU+/PU-: Pulse signals. The width of signal should larger than 2.5us. Motor move one

step for one signal

DR+/DR-: Direction signal

MF+/MF-: Motor enable signal

Connection ways:

Common Cathode: Connect PU-, DR- and MF- to GND, connect PU+, DR+ and MF+ to

GPIO, high active;

Common Anode: Connect PU+, DR+ and MF+ to 5~24V, connect PU-, DR- and MF- to

GPIO, low active;

Differential: Combine Command Cathode and Common Anode.

[Note] Recommend Common Cathode connection

SUBDIVISION

Support microsteppering subdivision and current subdivision.

MICROSTEPPERING SUBDIVISION

User DIP switches to control microsteppering.

REV/PULSE	D1	D2	D3	D4
300	ON	ON	ON	ON
500	ON	ON	ON	OFF

600	ON	ON	OFF	ON
800	ON	ON	OFF	OFF
1000	ON	OFF	ON	ON
1200	ON	OFF	ON	OFF
2000	ON	OFF	OFF	ON
3000	ON	OFF	OFF	OFF
4000	OFF	ON	ON	ON
5000	OFF	ON	ON	OFF
6000	OFF	ON	OFF	ON
10000	OFF	ON	OFF	OFF
12000	OFF	OFF	ON	ON
1600	OFF	OFF	ON	OFF
3200	OFF	OFF	OFF	ON
6400	OFF	OFF	OFF	OFF

D1/D2/D3/D4 are DIP switches used to control microsteppering, support 16 level

subdividing, default 200 pulse/circle.

Generally, step angle of two-phase stepper motor is 1.8 degree, so if it is set to 200, it

requires 200 pulse signals for every circle. 200*1.8 = 360

[Note] You should re-power on module to take effect.

CURRENT SUBDIVISION

RSM(A)	Peak(A)	D1	D2	D3	D4
1.2	1.7	OFF	OFF	OFF	OFF
1.5	2.1	OFF	OFF	OFF	ON
2.0	2.8	OFF	OFF	ON	OFF
2.3	3.2	OFF	OFF	ON	ON
2.5	2.5	OFF	ON	OFF	OFF
3.0	4.2	OFF	ON	OFF	ON
3.2	4.5	OFF	ON	ON	OFF
3.6	5.0	OFF	ON	ON	ON
4.0	5.6	ON	OFF	OFF	OFF
4.5	6.3	ON	OFF	OFF	ON
5.0	7.0	ON	OFF	ON	OFF
5.3	7.4	ON	OFF	ON	ON
5.5	7.7	ON	ON	OFF	OFF
5.8	8.1	ON	ON	OFF	ON
6.0	8.4	ON	ON	ON	OFF
6.0	8.4	ON	ON	ON	ON

User DIP switches to control driving current.

D1\D2\D3\D4 are DIP switches used to control driving current, support 16 level

controlling. Larger the current, larger the torque.

[Note] You should re-power to take effect.

USE GUIDES

DOWNLOAD DEMO CODES

Please visit Waveshare Wiki, search with key words "SMD356C. Download the demo

code from wiki,

Resources	[edit]
User Manual	
Demo code	

Extract it and you can get these folders:

Arduino	2018/11/26 19:18	文件夹
RaspberryPi	2018/11/24 17:27	文件夹
STM32	2018/11/26 19:18	文件夹

Arduino¹: Demo code for Arduino UNO;

RaspberryPi: Demo codes for Raspberry Pi. (BCM2835, wiringPi and python)

STM32: Demo code for STM32, control board is STM32F103RBT6

CONNECT STEPPER MOTORS

SMD258C is three-phase stepper motor driver, can drive three-phase stepper motors.

Standard three-phase stepper motor has three lines, their colors are red, yellow and

blue.

U- red line

V- yellow line

W-blue line

¹ If you use other Arduino board, you should check if it is compatible with Arduino Uno, or modification is required.

RASPBERRYPI EXAMPLES

COPY EXAMPLES TO RASPBERRY PI

1. Insert SD card which has Raspbian installed to your PC

资料 (D:)	Software (E:)
150 GB 可用, 共 199 GB	183 GB 可用, 共 199 GB
Project (G:)	boot (K:)
471 GB 可用, 共 531 GB	20.8 MB 可用, 共 42.5 MB

2. Copy RaspberryPi extracted to root directory (BOOT) of SD card

boot (K:) >			~
* ^	名称	修改日期	类型	大小
	overlays	2018/9/12 10:58	文件夹	
	RaspberryPi	2018/11/24 17:27	文件夹	
	bcm2708-rpi-0-w.dtb	2018/6/19 12:06	DTB 文件	22 KB
	bcm2708-rpi-b.dtb	2018/6/19 12:06	DTB 文件	22 KB
	bcm2708-rpi-b-plus.dtb	2018/6/19 12:06	DTB 文件	22 KB

3. Power on your Raspberry Pi and open Terminal, you can find that the examples is

listed in boot directory

Г

pi@raspberrypi:~ \$ ls /	boot/				
bcm2708-rpi-0-w.dtb	bcm2710-rpi-3-b.dtb	config.txt	fixup_x.dat	kernel.img	start_cd.elf
bcm2708-rpi-b.dtb	bcm2710-rpi-3-b-plus.dtb	COPYING.linux	FSCK0000.REC	LICENCE.broadcom	start_db.elf
bcm2708-rpi-b-plus.dtb	bcm2710-rpi-cm3.dtb	fixup_cd.dat	FSCK0001.REC	LICENSE.oracle	start.elf
bcm2708-rpi-cm.dtb	bootcode.bin	fixup.dat	issue.txt	overlays	start_x.elf
bcm2709-rpi-2-b.dtb	cmdline.txt	fixup_db.dat	kernel7.img	RaspberryPi	System Volume Information

4. Copy the RaspberryPi folder to /home/pi and change its execute permission.

sudo cp -r /boot/RaspberryPi/ ./
sudo chmod 777 -R RaspberryPi/
pi@raspberrypi:~ \$ sudo cp -r /boot/RaspberryPi/ ./
code libcode RaspberryPi RPILib ubuntu usbdisk
pi@raspberrypi:~ \$ sudo chmod 777 -R RaspberryPi/
pi@raspberrypi; <u>~ \$ ls</u>
code libcode RaspberryPi RPILib ubuntu usbdisk

LIBRARIES INSTALLATION

To use demo codes, libraries should be installed first.

BCM2835 LIBRARY

Download link of the bcm2835 library: http://www.airspayce.com/mikem/bcm2835/

Download the library and copy it to raspberry pi without extracting. Open terminal of

raspberry pi and install:

sudo tar zxvf bcm2835-1.xx.tar.gz
cd bcm2835-1.xx
sudo ./configure
make
sudo make check
sudo make install

Note: xx is version of the library you download. For example, if the version is

bcm2835-1.52, you should complete the command to: sudo tar zxvf bcm2835-

1.52.tar.gz

WIRINGPI LIBRARY

Open Terminal and install wiringPi with commands below:

sudo apt-get install git

sudo git clone git://git.drogon.net/wiringPi

cd wiringPi

sudo ./build

PYTHON LIBRARY

Open Terminal and execute commands to install:

sudo apt-get install python-pip

sudo pip install RPi.GPIO

sudo pip install spidev

HARDWARE CONNECTION

Driver	RaspberryPi(BCM2835)	
	Common Cathode	Common Anode
PU+	19	5V
PU-	GND	19
DR+	13	5V
DR-	GND	13
MF+	12	5V
MF-	GND	12

Common Cathode

Common Anode

[Note] Common Cathode: High active; Common Anode: Low active

RUNNING DEME CODE

• BCM2835:

cd bcm2835

sudo ./motor

• wiringpi:

cd wiringpi

sudo ./motor

• python:

cd python

sudo python main.py

• Expected result:

Motor will rotate a circle clockwise and then rotate two circles anticlockwise

STM32 EXAMPLE

The development board used is XNUCLEO-F103RB. Project is based on HAL library

HARDWARE CONNECTION

Driver	XNUCLEO-F103RB	
	Common Cathode	Common Anode
PU+	PB4	5V
PU-	GND	PB4
DR+	PB10	5V
DR-	GND	PB10
MF+	PB8	5V
MF-	GND	PB8

[Note] Common Cathode: High active; Common Anode: Low active

ARDUINO

The development board used herein is Arduino UNO

Driver	Arduino UNO	
	Common Cathode	Common Anode
PU+	5	5V
PU-	GND	5
DR+	6	5V
DR-	GND	6
MF+	7	5V
MF-	GND	7

[Note] Common cathode: High active; Common anode: Low active

FAQ

1. Why motor and driver board get very hot?

Energy efficiency of stepper motor is very low, has only 20%~30% useful work, others become heat. So, stepper motor will get very hot after running for long time. Do not touch!!!

2. Why doesn' t motor work and only be shaking?

Motor shake when lack-phase, try to connect motor with Dupont lines if both

interfaces of module cannot work properly

3. Why do motor desynchronize?

The phase current is based on torsion of stepper motor. You can adjust the blue potentiometer if motor desynchronize.

4. Why do motor sound "si, si" when stopping?

It is normal phenomenon.

5. How to use RS232 interface on board.

The RS232 interface is used to factory configure driver board, which is unavailable

for users.