

2.15inch e-Paper (B) User Manual

User Manual

Revision History

Version	Content	Date	Page
1.0	New creation	2024/09/05	All

Contents

1. OVERVIEW	1
2. FEATURES	2
3. MECHANICAL SPECIFICATION	3
4. MECHANICAL DRAWING OF EPD MODULE	4
5. INPUT/OUTPUT PIN ASSIGNMENT	
6. ELECTRICAL CHARACTERISTICS	
6.1 Absolute Maximum Rating	7
	8
6.3 Panel AC Characteristics	g
7. COMMAND TABLE	14
8. OPTICAL SPECIFICATIONS	26
9. HANDLING, SAFETY, AND ENVIRONMENT REQUIREMENTS	
10. RELIABILITY TEST	28
11. REFRENCE CIRCUIT	
12. TYPICAL OPERATING CIRCUIT	30
12.1 Normal Operating Flow	30
12.2 Normal Operation REFERENCE PROGRAM CODE	31
13. INSPECTION METHOD AND CONDITION	32
14.1 Inspection Condition	32
14.2 Zone Definition	32
14.3 General Inspection Standards for Products	33
14. PACKAGING	36

1. OVERVIEW

2.15inch e-Paper (B) is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black and red full display capabilities. The 2.15 inch active area contains 160×296 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller ,oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

FEATURES

- 160x296 pixels display
- High contrast
- ♦ High reflectance
- ♦ Ultra wide viewing angle
- ♦ Ultra low power consumption

- ...e display surface
 ...ew current deep sleep mode

 ♦ On chip display RAM

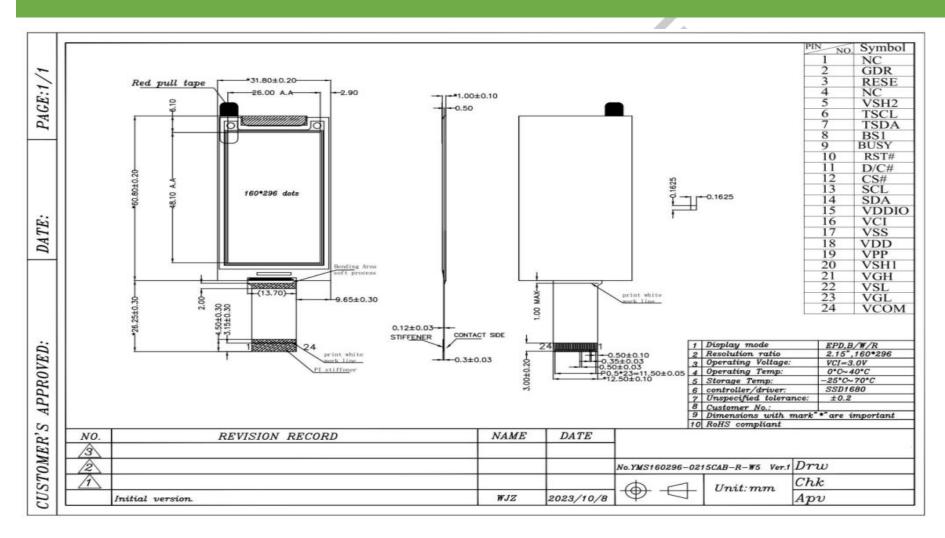
 ♦ Waveform stored in On-chip OTP or written by MCU

 ♦ Serial peripheral interface available

 > On-chip oscillator
 On-chip booster and regulate

 I2C signal master

 Supr ♦ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- Support partial update mode
- ♦ Built-in temperature sensor



3. MECHANICAL SPECIFICATION

Parameter	Specification	Unit	Remark
Screen Size	2.15	Inch	
Display Resolution	160(H) x 296(V)	Pixel	DPI:156
Active Area	26.0 x 48.1	mm	
Pixel Pitch	0.1625 x 0.1625	mm	
Pixel Configuration	Rectangle		
Outline Dimension	31.8(H)×60.8(V)×1.0(D)	mm	
Weight	3.6±0.5	g	
	Shorle awesome		

4. MECHANICAL DRAWING OF EPD MODULE

5. INPUT/OUTPUT PIN ASSIGNMENT

NO.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC		Do not connect with other NC pins	Keep open
5	VSH2	С	Positive Source driving voltage(Red)	
			This pin is I ² C Interface to digital temperature sensor Clock pin.	
6	TSCL	0	External pull up resistor is required when connecting to I ² C slave.	
			When not in use: VSS	
			This pin is l ² C Interface to digital temperature sensor Data pin.	
7	TSDA	I/O	External pull up resistor is required when connecting to I ² C slave.	
			When not in use: VSS	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RST#	I	Reset signal input.Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	Р	Power Supply for the chip	
17	VSS	Р	Ground	
10	VDD	С	Core logic power pin VDD can be regulated internally from VCI.	
18	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		A capacitor should be connected between VDD and VSS	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSHI	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I=Input Pin, O=Output Pin, I/O=Bi-directional Pin(Input/output), P=Power Pin, C=Capacitor Pin

Note 5-1:This pin(CS#)is the chip select input connecting to the MCU. The chip is enabled for MCU

communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3:This pin(RES#)is reset signal input. The Reset is active low.

Note 5-4:This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5:Bus interface selection pin.

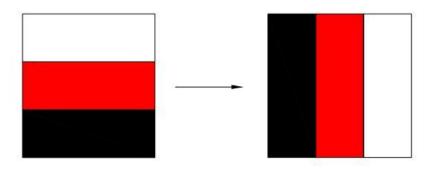
BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI)-8 bits SPI
Н	3-lines serial peripheral interface(SPI)-9 bits SPI

6. ELECTRICAL CHARACTERISTICS

6.1 ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +40	°C
Storage Temp range	TSTG	-25 to +70	°C
Optimal Storage Temp	TSTGo	23±2	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.



6.2 PANEL DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	V _{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8V _{CI}	ı	ı	V
Low level input voltage	VıL	-	-	-	ı	0.2Vcı	V
High level output voltage	V _{ОН}	IOH = -100uA	-	0.9V _{CI}	ı	ı	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	ı	0.1V _{CI}	V
Typical power	P_{TYP}	V _{CI} =3.3V	-	-	TBD	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.3V	-	-	0.003	-	mW
Typical operating current	lopr_V _{Cl}	V _{CI} =3.3V	-	-	TBD	-	mA
Image update time	-	25 °C	-	-	22	1	sec
Sleep mode current	Islp_V _{Cl}	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	ldslp_V _{Cl}	DC/DC off No clock No input load Ram data no retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 3 scale pattern to vertical 3 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Waveshare.
 - 3. Electrical measurement: Multimeter

6.3 PANEL AC CHARACTERISTICS

6.3.1 MCU INTERFACE SELECTION

The pin assignment at different interface mode is summarized in Table 6-4-1.Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name Data/Comman		nd Interface	(Control Signa	ı
Bus interface	SDA SCL		CS#	D/C#	RES#
BS1=L4-wire SPI	SDA	SCL	CS# D/C# RES#		RES#
BS1=H3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU SERIAL INTERFACE (4-WIRE SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	
Write data	L	Н	

Note: ↑stands for rising edge of signal.

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ..D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM/Data Byte register or command Byte register according to D/C# pin.

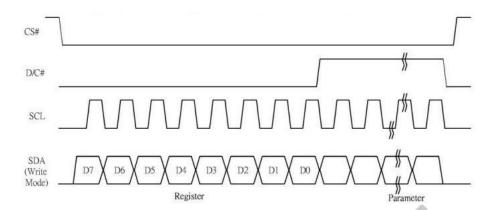


Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS#to low,MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6,...D0 with D/C# keep low.
 - 3. After SCL change to low for the last bit of register, D/C#need to drive to high.
 - 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7,D6,..D0.
 - 5. Depending on register type,more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

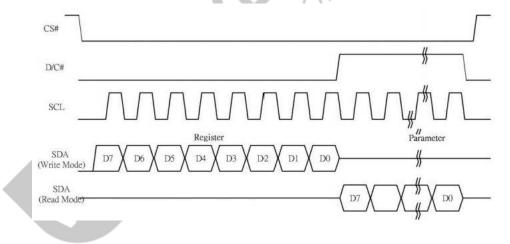


Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU SERIAL INTERFACE (4-WIRE SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C#pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C#bit, D7 to D0 bit. The D/C#bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C#bit=1) or the command register (D/C#bit=0).

Function	CS#	D/C#	SCL
Write command	L	Tie	
Write data	L	Tie	

Note: † stands for rising edge of signal

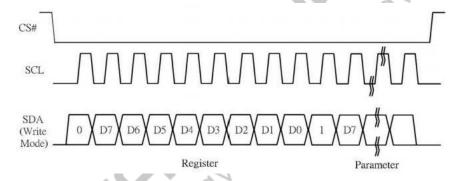


Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS#to low,MCU need to define the register to be read.
- 2. 2.D/C=0 is shifted thru SDA with one rising edge of SCL.
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6,..D0 4. D/C=1 is shifted thru SDA with one rising edge of SCL.
 - 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7,D6,...D0
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS#need to drive to high to stop the read operation.

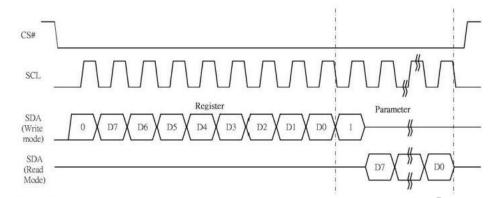
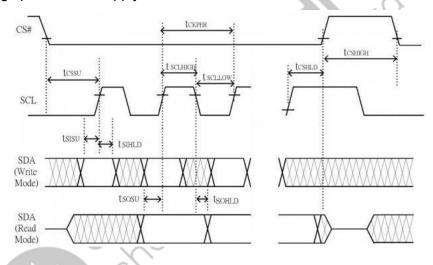



Figure 6-4:Read procedure in 3-wireSPI mode

6.3.4 INTERFACE TIMING

The following specifications apply for:VSS=0V,VCI=3.0V,TOPR=25℃.

Serial Interface Timing Characteristics (VCI-VSS=2.2V to 3.7V,TOPR=25℃,CL=20pF)

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tcsнigh	Time CS# has to remain high between two transfers	100			ns
tschiigh	Part of the clock period where SCL has to remain high	25			ns
tscLLow	Part of the clock period where SCL has to remain low	25			ns
t _{sisu}	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40		1	ns

Read mode

frequency (Read Mode) CS# has to be low before the first rising edge of SCLK CS# has to remain low after the last falling edge of SCLK CS# has to remain high between two transfers of the clock period where SCL has to remain high of the clock period where SCL has to remain low	100 50 250 180	22	2.5	MHz ns ns
CS# has to remain low after the last falling edge of SCLK CS# has to remain high between two transfers of the clock period where SCL has to remain high	50 250 180	60 60 60		ns
CS# has to remain high between two transfers of the clock period where SCL has to remain high	250 180			0 49/105
of the clock period where SCL has to remain high	180	() ()		S. 11900 C
		17		ns
of the clock period where SCL has to remain low	400	32		ns
	180			ns
SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns
000				
	No of the state of	A Jacks	Moke	Colle

7. COMMAND TABLE

	IIIaii	d Tal	ble												
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			001 8
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao], 296 MU	
0	1		0	0	0	0	0	0	0	A ₈		MUX Gat	e lines se	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output se GD=1, G1 is the output se B[1]: SM Change s SM=0 [PC G0, G1, C interlaced SM=1, G0, G2, C B[0]: TB	no [POR] nning seq ne 1st outp DR], 1st gate of quence is 1st gate of quence is canning of DR], 62, G32	but Gate butput cha G0,G1, G butput cha G1, G0, G	nnel, gate 2, G3, nnel, gate 33, G2, te driver. nd right gate
				S B						16				G295 to G	
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate			
0	1		0	0	0	A ₄	Аз	A ₂	A ₁	Ao	Control	A[4:0] = 0			KI I
													VGH	0V to 20V	VGH
												A[4:0] 00h	20	A[4:0] 0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12.3	14h	18.5
												07h	12.5	14n 15h	19
												09h	13	16h	19.5
												09h 0Ah		17h	20
													13.5		20
										1		0Bh	14	Other	NA

_	man	_	D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description
0	0	04	0	0	0	0	0	1	0	0		e Driving	voltage	Set Source driving voltage
0	1	04	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Contro		voltage	A[7:0] = 41h [POR], VSH1 at 15V
76.6	201	×	20.000		19715		2000	0	25000	The same of	-			B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-			C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co				Remark: VSH1>=VSH2
A[7]	/B[7]	= 1,							7]/B[7					C[7] = 0,
		SH2	oltag	e se	tting	from	2.4V			SH2	2 voltag	e setting	from 9V	VSL setting from -5V to -17V
to 8	100000000000000000000000000000000000000	Lyou		1 4/5	17.01	Lucius			17V	Lve		1 1077 01	Lucium	
	B[7:0] 8Eh	_	1/VSH2 2.4	_	[7:0] Fh	_	/VSH2	· _ '	A/B[7:0] 23h	VS	9 9	A/B[7:0] 3Ch	VSH1/VSH	C[7:0] VSL 0Ah -5
- 10	8Fh	-	2.5	100	0h	72.07	.8		24h	1	9.2	3Dh	14.2	0Ch -5.5
	90h		2.6	100	11h	30370	.9		25h		9.4	3Eh	14.4	0Eh -6
	91h 92h	_	2.7	_	2h 3h		.1		26h 27h	-	9.6	3Fh 40h	14.6 14.8	10h -6.5
	93h	_	2.9	1,500	i4h	1327	.2	-	28h	+	10	40h	15	12h -7
	94h		3	_	5h	_	.3		29h		10.2	42h	15.2	14h -7.5
	95h	_	3.1	_	6h		.4		2Ah		10.4	43h	15.4	16h -8
	96h 97h	-	3.2	- 22	17h 18h	1921	.5	\vdash	2Bh 2Ch	-	10.6	44h 45h	15.6 15.8	18h -8.5
	97n 98h	_	3.4	_	i8h	_	.7		2Dh	-	10.8	45h 46h	15.8	1Ah -9
(0)	99h	-	3.5	1,35	Ah	100	.8		2Eh		11.2	47h	16.2	1Ch -9.5 1Eh -10
	9Ah	7	3.6		Bh	1.00	.9		2Fh		11.4	48h	16.4	20h -10.5
	9Bh 9Ch	_	3.7		Ch Dh		.1	—	30h 31h		11.6 11.8	49h 4Ah	16.6 16.8	22h -11
	9Dh	- //	3.9		Eh		.2	-	32h	+	12	4Bh	17	24h -11.5
	9Eh		4	_	Fh	_	.3		33h	1	12.2	Other	NA	26h -12
	9Fh	_	4.1	_	0h		.4		34h		12.4			28h -12.5
77	A0h A1h	_	4.2 4.3	7110	1h 2h	-	.5 .6		35h 36h	-	12.6 12.8			2Ah -13
_	A2h	_	4.4	_	3h	7			37h	+	13			2Ch -13.5
- 19	A3h	9	4.5	C	4h	7	.8		38h		13.2			2Eh -14 30h -14.5
	A4h	_	4.6	_	5h		.9		39h		13.4			32h -15
_	A5h A6h	_	4.7 4.8	_	6h 7h	_	.1	-	3Ah 3Bh		13.6			34h -15.5
	A7h	_	4.9		8h		.2	- d	ODII	- 1	10.0			36h -16
- 10	A8h		5		9h	-	.3							38h -16.5
_	A9h	_	5.1	_	Ah		.4							3Ah -17
	AAh ABh	_	5.2 5.3	_	Bh Ch		.6							Other NA
- 10	ACh	_	5.4	_	Dh		.7							
	ADh	_	5.5	С	Eh		.8							
-	AEh		5.6	0	ther	N	Α							
_											T			1-
0	0	08	0	0	0	0	1	0	0	0		Code Set	ting	Program Initial Code Setting
											OIPF	rogram		The command required CLKEN=1
														The command required CLKEN=1. Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
				-							1			орогалот.
11.0	0	09	0	0	0	0	1	0	0	1	Write	Register f	for Initial	Write Register for Initial Code Setting
0	-		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Setting		Selection
	1 1	-	200.000	_		-		-		2	-	3		A[7:0] ~ D[7:0]: Reserved
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-			Details refer to Application Notes of Initi
0	1			C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	1			Code Setting
0 0 0	1		C ₇		3					1				
0	1		C ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀				
0 0	1		000000		D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0 0	1	0A	000000		D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Read	Register t	for Initial	Read Register for Initial Code Setting

		Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	n
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Topics and the second s	ble with Phase 1, Phase 2 and Phase
0	1		1	A ₆	A ₅	A ₄	Аз	A ₂	A ₁		Control	for soft start	current and duration setting.
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	-	-			start setting for Phase1
0	1		1	C ₆	C ₅	C ₄	-	C ₂					Bh [POR] start setting for Phase2
0	1	9 9	0	0	D ₅	D ₄	2000	D ₂	-	1000	-	= 9	Ch [POR]
U			U	U	D 5	D4	D3	D2	D ₁	D ₀			t start setting for Phase3 6h [POR]
													Fh [POR]
													cription of each byte: B[6:0] / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
													1
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	Time unit
												~	NA
												0011	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4] D[3:2]	duration setting of phase duration setting of phase 3 duration setting of phase 2 duration setting of phase 1
												Bit[1:0]	Duration of Phace
												00	10ms
												01	20ms
												10	30ms
												11	40ms
_	0	10	0	0	0	4	0	0	0	0	Dean Class made	Deep Oles-	made Central:
0	0	10	0	0	0	1	0	0	0		Deep Sleep mode		mode Control:
0	1		0	0	0	0	0	0	A ₁	A ₀			Description
													Normal Mode [POR]

1	C
	n

11

Enter Deep Sleep Mode 2

After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high.
Remark:
To Exit Deep Sleep mode, User required to send HWRESET to the driver

		- 4	•	_							5	
0	0	11	0	0	0	0	0	0	0	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
			Ü	0	0	O	U	A2	Aı	Ao		A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X increment, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

	^	4.5	^	_	0	2	^	2	^	4	VOI D-t!'	VOLD-tti
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A ₁	A ₀		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect
												The state of the s
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
0 0 0	0 1 0 1	18 1A	0 A ₇	0 A ₆	0 A ₅	1 A ₄ 1 A ₈ A ₀	1 A ₃ 1 A ₇	0 A ₂ 0 A ₆ 0	0 A ₁ 1 A ₅	0 A ₀	Temperature Sensor Control Temperature Sensor Control (Write to temperature register)	The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). Temperature Sensor Selection A[7:0] = 48h [POR], external temperature sensor A[7:0] = 80h Internal temperature sensor Write to temperature register. A[11:0] = 7FFh [POR]
0	0	1D	0	0	0	1	1	0	1	1	Tomporatura Capaci	Road from tomporature register
0	0	1B	0				1	0	1	1	Temperature Sensor Control (Read from	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	temperature register)	
1	1		Аз	A ₂	A ₁	Ao	0	0	0	0	tomporataro regiotory	
								4			70	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command to External temperature	sensor. A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	sensor)	B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	,	C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
								(16)				The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.

-													
0	1	21	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Display Update Control	RAM content option for Display A[7:0] = 00h [POR]	Update
NAME OF THE OWNER		15						100 N	27			B[7:0] = 00h [POR]	
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option	
												0000 Normal	
												0100 Bypass RAM con	
												1000 Inverse RAM con	tent
												A[3:0] BW RAM option	
												0000 Normal	
												0100 Bypass RAM con	
												1000 Inverse RAM con	tent
												B[7] Source Output Mode	
												0 Available Source from S0) to S175
												1 Available Source from St	3 to S167
									8		l	A A IV)
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opti	on:
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	tivation
												Operating sequence	Parameter
												Enable clock signal	(in Hex) 80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1	91
												→ Disable clock signal Enable clock signal	
												→ Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal	
												→ Load temperature value → Load LUT with DISPLAY Mode 1	B1
												→ Disable clock signal	
												Enable clock signal → Load temperature value	B9
												 → Load LUT with DISPLAY Mode 2 → Disable clock signal 	В
												Enable clock signal	
												→ Enable Analog → Display with DISPLAY Mode 1	C7
												 → Disable Analog → Disable OSC 	199,000
												Enable clock signal → Enable Analog	
												→ Display with DISPLAY Mode 2	CF
												→ Disable Analog → Disable OSC	
												Enable clock signal	
												→ Enable Analog→ Load temperature value	F7
												→ DISPLAY with DISPLAY Mode 1 → Disable Analog	1.7
												→ Disable OSC Enable clock signal	
												→Enable Analog → Load temperature value	
												→ DISPLAY with DISPLAY Mode 2	FF
												→ Disable Analog→ Disable OSC	
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Rlack White)	After this command, data entrie	e will be
U	U	24	U	U	¥7,	U	U	, l	U	0	Write RAM (Black White) / RAM 0x24	written into the BW RAM until a	
												command is written. Address p	ointers will
												advance accordingly	
												For Write pixel: Content of Write RAM(BW) =	1
												For Black pixel:	
												Content of Write RAM(BW) =	0

Com	man	d Ta	ble									
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
									Oth Control			For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
		-1.										BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	Ao		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
				-								BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	S	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1	0)	0	1	1	0	0	0	1	1	1	D04h and D63h should be set for this command.

The second second	man	THE RESERVE	-	-	-	-				-		- In	• B. (2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript			
0	1	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register		OM regist 00h [POR]		ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	- 0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
-															
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A_5	A ₄	Аз	A_2	A ₁	Ao	Display Option	A [7.0].	VOOMOT	D 0-1#	1200
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			VCOM OT and 0x37,		on
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		(Commi	and oxor,	Dyle A)	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	-	B[7:0]:	VCOM Re	gister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(Comm	and 0x2C))	
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		0[7.0]	0[7.0], D:		i
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	_		G[7:0]: Dis and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀	-	[5 bytes		Dyle D lo	Dyte i)
20	-8-		16011	0.0000	1000000	5.00	000000	(0.000)	11/2/15/2015	2 00 7	_	15 -7	1		
1	1		17	I 6	15	 4	l ₃	12	l ₁	I ₀			K[7:0]: Wa		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes	5]		
_				_								- I			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read				ed in OTP: Byte A and
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			[10 bytes]		byte A and
1	1		B ₇	B ₆	B 5	B ₄	Вз	B ₂	B ₁	Bo		2,100)	[To D J TOO]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	Do					
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	E ₀	1				
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	1				
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-				
1	1	-	I ₇	I ₆	I ₅	114	l ₃	I ₂	I ₁	Io	-				
	1 1		17	16	15	14	13	12	11	10	1	- 1			

0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	Ao	Status bit Neau	A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY]
0	1		:	:	:	:		i	1	:		Refer to Session 6.7 WAVEFORM
0	1		B		ē	•	•	•	•	•		SETTING
_	0	0.4	^	0	2		_		•		ODO! ! "	ODOII-ti
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	00	A ₁₅	A ₁₄	A ₁₃	70000	39.7%	A ₁₀	A ₉	A ₈	ONO Glatus Neau	A[15:0] is the CRC read out value
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₁	A ₀		The second of th
_ R	1	-	17	1 6	_ 5	~ 4	A 3	A 2	~1	Λ0		

0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		1. Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		0: Display Mode 1 1: Display Mode 2
0	1		17	I 6	15	14	l ₃	12	11	lo		1. Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID Write Register for User ID
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo	
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀	
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀	
0	1		17	l 6	I 5	14	lз	12	l ₁	lo	
0	1		J ₇	J 6	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀	
0	0	39	0	0	1	1	1	0	0	1	OTP program mode OTP program mode
0	1	39	0	0	0	0	0	0	A ₁	Ao	A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences

1	3C	0 A ₇	0 A ₆	1 A ₅	1 A ₄	0	1 A ₂	0 A ₁	0 A ₀	Border Waveform Control	A[7:0] = C01	[POR], set VBD as HIZ.
1		~ 7	1 6	A5	74	U	A 2	~ 1	10	I		
											A [7:6] :Sele	ect VBD option
											A[7:6]	Select VBD as
											00	GS Transition,
											8800	Defined in A[2] and
												A[1:0]
											01	Fix Level,
												Defined in A[5:4]
											10	VCOM
											11[POR]	HiZ
												evel Setting for VBD
												VBD level
												VSS
												VSH1
												VSL
											11	VSH2
											A101 00 T	
												SS Transition control
											1	Collow LUT
												Output VCOM @ RED) Follow LUT
												Ollow LUT
											A [1:0] CS T	ransition satting for VPD
												ransition setting for VBD VBD Transition
												LUT0
											-	LUT1
												LUT2
												LUT3
_									S		1.1	E013
0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for L	UT end
1	-	57707	1.72	13.			80	- 22	Δο			
å		~/	Λ6	Λο	~ 4	Λ3	~ 2	Λ1	7.0			
												rce output level keep
											prev	ious output before power off
- 17										*	10/00	
0	41	0	1	0	0	0	0	0	1	Read RAM Option		
1		0	0	0	0	0	0	0	Ao			
												M corresponding to RAM0x24
											I : Kead RA	M corresponding to RAM0x26
	_			_	700							
0	44	0	1	1	_	0	1	0	0	Set RAM X - address	Specify the	start/end positions of the
		1972	9		5 163 1	200	- 2					ress in the X direction by an
		22.00			-	0.0000				- In a position		
1		0	U	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			
												5:0], XStart, POR = 00h
											B[5:0]: XEA[5:0], XEnd, POR = 15h
										Tool 6-55-50 1000 400	T	Se 2000 on 2000 March 1
	-		100	0	0	0	1	0	1	Set Ram Y- address		start/end positions of the
0	45	0	1	0						Start / End pocition	IWINDOW add	
0	45	0 A ₇	1 A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Start / End position		ress in the Y direction by an
-	45	5655		70.00		A ₃	A ₂	A ₁	A ₀	Start / End position	address uni	
1	45	A ₇	A ₆	A ₅	A ₄	C1-00-00	7.6547.05	2	720000	Start / End position	address uni	
1	0 1	0 41 0 44 1	0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 41 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A7 A6 A5 O 41 O 1 O O 0 O O 44 O 1 O O 0 A5	0 41 0 1 0 0 0 44 0 1 0 0 1 0 0 A5 A4	0 41 0 1 0 0 0 0 44 0 1 0 0 0 1 0 0 0 0 0	0 41 0 1 0 0 0 0 1 0 0 0 0 0 0 0 44 0 1 0 0 0 0 1 0 0 A5 A4 A3 A2	0 41 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 44 0 1 0 0 0 0 1 0 1 0 0 A5 A4 A3 A2 A1	0 41 0 1 0 </td <td>0 41 0 1 0 0 0 0 1 Read RAM Option 0 44 0 1 0 0 0 1 0 0 Set RAM X - address 1 0 0 A₅ A₄ A₃ A₂ A₁ A₀</td> <td> 11[POR]</td>	0 41 0 1 0 0 0 0 1 Read RAM Option 0 44 0 1 0 0 0 1 0 0 Set RAM X - address 1 0 0 A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	11[POR]

0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write	RED RA	M for Rea	ular Patter
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0		W for reg	ulai i attor
					17 (18 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19							A[6:4]: Ste	1st step va ep Height, ter RAM ir	POR= 00	t = 0 0 on accordin
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												010	64	111	NA
												A[2:0]: Ste	ep Width, l ter RAM ir	POR= 000	
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010	32	110	NA
														100000000000000000000000000000000000000	
												011	64	111	NA
								75				BUSY pac operation	d will outpu	ut high du	ring
)	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	e B/W RAI	M for Regi	ular Patterr
0	1	т,	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0		vi loi ittogi	alai i attori
												A[6:4]: Ste	1st step va ep Height, ter RAM ir	POR= 00	t = 0 0 on accordir
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
													32	110	296
												010	64	111	NA NA
					2000							Step of al to Source A[2:0] 000 001 010 011 During op high.	Width 8 16 32 64 eration, B	A[2:0] 100 101 110 111 USY pad	Width 128 176 NA NA will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address		al settings		
0	1		0	0	A ₅	A ₄	Аз	A ₂	A ₁	Ao	counter	address in A[5:0]: 00	n the addr h [POR].	ess count	er (AC)
		,,													
)	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address		al settings		
0	1		A ₇	A ₆	A_5	A ₄	Аз	A ₂	A ₁	Ao	counter		the addre		er (AC)
)	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	0h [POR].	Ď.	
0	0	7F	0	1	1	1	1	1	1	1	NOP	does not module.	have any e it can be u	effect on the	

8. OPTICAL SPECIFICATIONS

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2 Grey Level	-		DA + (WS-DS)*n(M-1)			8-3
T update	Image update time	at 25 °C		22	-	sec	
Life		Topr		1,000,000times or 5years			

Note 8-1: Luminance meter: Eye-One Pro Spectrophotometer.

Note 8-2: CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

Note 8-2: WS: White state, DS: Dark State

Temper	ature(℃)	0≤T<3℃	3≤T<6℃	6≤T<10℃	10≤T<15℃	15≪T<20℃	20≤T<32℃	32≤T<40℃
	MIN L*	>63	>63.5	>64	>	>64. 5	>64	>62
white state	A*		7.8%	•	<0			
	Ghosting (\triangle E)				≤1			
change	rate(△E)				€2			
	MAX L*				14			
black state	A*				<4			
	Ghosting $(\triangle E)$				≤1			
change	e rate(△E)				€2			
	MIN L*		>26			>27		
Red state	A*	>36	>38	>39	>40		>41	
	Ghosting (\triangle E)				≤2			
change	rate(△E)				€2			

9. HANDLING, SAFETY, AND ENVIRONMENT REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

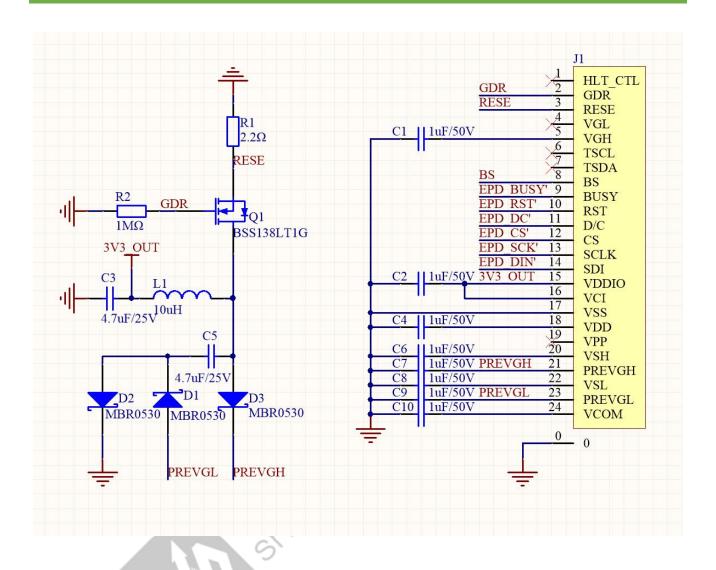
Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status							
Product specification	This data sheet contains final product specifications.						
Limiting values							
Limiting values given are in ac	cordance with the Absolute Maximum Rating System (IEC						
134). Stress above one or more	e of the limiting values may cause permanent damage to the						
device. These are stress rating	device. These are stress ratings only and operation of the device at these or at any other						
conditions above those given	in the Characteristics sections of the specification is not						

Application information

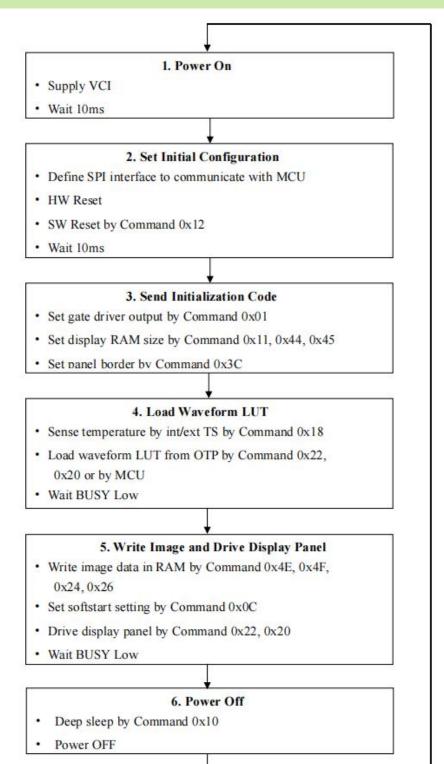
implied. Exposure to limiting values for extended periods may affect device reliability.

Where application information is given, it is advisory and does not form part of the specification.



10. RELIABILITY TEST

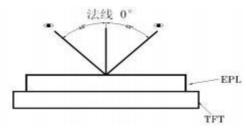
NO	Test items	Test condition
1	Low-Temperature Storage	T=-25℃,240 h
2	High-Temperature Storage	T=60℃, RH=40%, 240h
3	High-Temperature Operation	T=40℃, RH=35%, 240h
4	Low-Temperature Operation	T=0℃, 240h
5	High Temperature High Humidity Operation	T=40℃, RH=80%, 240h
6	High Temperature High Humidity Storage	T=50℃, RH=80%, 240h
7	Temperature Cycle	lcycle:[-25°C 30min]→ [+60°C 30 min]:50 cycles
8	Thermal Shock	lcycle:[-25°C 30min]→ [+60°C30min]:240 cycles
9	ESD Gun	Air:+/-4KV Contact:+/-2KV
10	Drop Test	Height 122cm:Refer to each model SPEC 1 corner,3 edge,6 surface
11	Transport Environmental Test	60℃,90%,240h
12	Package Vibration	A=1.5mm,Frequency:10~60Hz Direction:X,Y,Z Duration:1hours in each direction
13	UV Exposure Resistance	765 W/m²for 168hrs,40℃


11. REFRENCE CIRCUIT

12. TYPICAL OPERATING CIRCUIT

12.1 NORMAL OPERATING FLOW

12.2 NORMAL OPERATION REFERENCE PROGRAM CODE


TBD

13. INSPECTION METHOD AND CONDITION

14.1 INSPECTION CONDITION

Item	Condition
Illuminance	800~ 1500 lux
Temperature	22 ℃±3℃
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes

14.2 ZONE DEFINITION

A Zone: Active area

B Zone: Border zone

C Zone: From B zone edge to panel edge

14.3 GENERAL INSPECTION STANDARDS FOR PRODUCTS

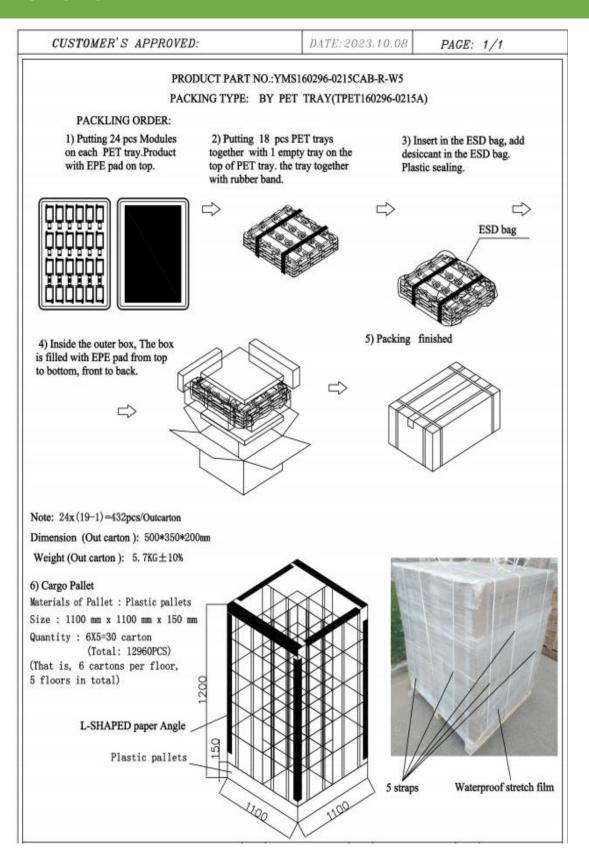
14.3.1 APPEARANCE INSPECTION STANDARD

Inspection item		Fi	gure	A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	The distance between the two spots should not be less than 10mm	7.5"-13.3"Module (Not include 7.5"): D>1mm N=0 0.5 <d≤0.8 (not="" 0.8<d≤1="" 4.2"):="" 4.2"-7.5"module="" d="" d≤0.5="" ignore="" include="" n≤2="" n≤4="">0.5 N=0 0.4<d≤0.5 0.25<d≤0.4="" 4.2":="" below="" d="" d≤0.25="" ignore="" module="" n≤2="" n≤4="">0.5 N=0 0.4<d≤0.5 0.1mm<d≤0.25="" 0.25<d≤0.4="" cm²<="" d≤0.25="" ignore="" m≤4="" n≤1="" n≤3="" th=""><th>Foreign matter D≤1mm Pass</th><th>Check by eyes Film gauge</th><th>MIN</th></d≤0.5></d≤0.5></d≤0.8>	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Inspection item		F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	tion item	Figure	Inspection standard	Inspection method	MA J/ MIN	
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel 順角		Check by eyes. Film gauge	MIN	
	Crack	教機器依	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN	
	Burr edge	†H,	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN	
	Curl of panel	H_Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN	

				Inspecti	MAJ	
Inspec	tion item	Figure	Inspection standard	on	/	
Шэрсс	tion item	1 Iguit	Inspection standard	method	MIN	
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN	
			Adhesive height exceeds the display surface, not allowed			
RTV defect	Adhesive effect		1. Overflow, exceeds the panel side edge, affecting the size, not allowed 2. No adhesive at panel edge≤1 mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1 mm, no exposure of wiring, allowed	Check by eyes	MIN	
			Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed			
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN	
EC defect	Adhesive bubble	防水散涂布区 封边散边缘 PS边缘 防水散涂布区 Border外缘 (PPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN	


Inspecti	ion item	Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect	Š	1.Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
FPC defect	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective film defect	Protective film	Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
		Adhesive at edge L≤5mm, W≤0.5mm, N=	2, no entering into viewing area	Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99% alcohol, allowed		Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the w requirements of the technical documents.	ork sheet. The attaching position meets the	Check by eyes	MIN
		Shorte	owesome		

14. PACKAGING

