

3.52inch e-Paper (B) User Manual

Revision History

Version	Content	Date	Page
1.0	New creation	2024/09/05	All

shore owesome ho

Contents

1. OVERVIEW	1
2. FEATURES	2
3. APPLICATION	3
4. MECHANICAL SPECIFICATION	4
5. MECHANICAL DRAWING OF EPD MODULE	4
6. INPUT/OUTPUT PIN ASSIGNMENT	5
7. HOST INTERFACE	
8. TEMPERATURE SENSOR OPERATION	
9. COMMAND TABLE	9
10. COMMAND DESCRIPTION	
11. REFERENCE CIRCUIT	41
12. ABSOLUTE MAXIMUM RATING	42
13. DC CHARACTERISTICS	43
14. AC CHARACTERISTICS	44
15. POWER CONSUMPTION	46
16. OPTICAL CHARACTERISTICS	47
16.1 Specification	47
16.2 Definition of Contrast Ratio	48
16.3 Reflection Ratio	49
17. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS	
18. RELIABILITY TEST	52
18.1 Reliability Test Item	
18.2 Product Life Time	53
18.3 Product Warranty	
19. BLOCK DIAGRAM	
20. PART A/PART B SPECIFICATION	55
21. POINT AND LINE STANDARD	56

1. OVERVIEW

3.52inch e-Paper (B) is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 3.52" active area contains 240×360 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

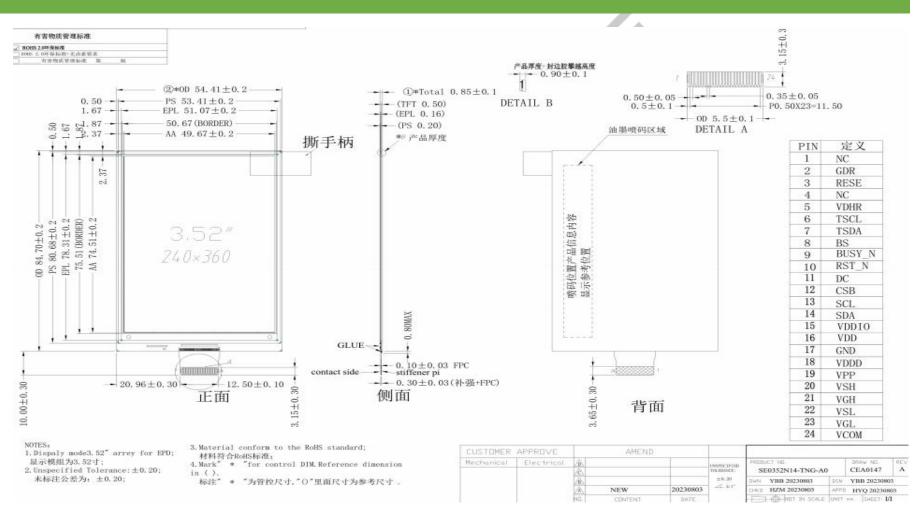
FEATURES 2.

- 240x360 pixels display ∻
- High contrast ∻
- High reflectance ∻
- \diamond Ultra wide viewing angle
- ♦ Ultra low power consumption
- Pure reflective mode ∻
- **Bi-stable display** ∻
- Commercial temperature range ∻
- Landscape portrait modes ∻
- Hard-coat antiglare display surface ∻
- Ultra low current deep sleep mode ∻
- ∻ On chip display RAM
- Low voltage detect for supply voltage ∻
- wesome hordwore High voltage ready detect for driving voltage ∻
- Internal temperature sensor ∻
- ∻ 10-byte OTP space for module identification
- Waveform stored in On-chip OTP ∻
- Serial peripheral interface available ∻
- On-chip oscillator ∻
- ∻ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor ∻

3.52inch e-Paper (B) User Manual

3. APPLICATION

Electronic Shelf Label System


shore avesome hordware

4. MECHANICAL SPECIFICATION

Parameter	Specification	Unit	Remark						
Screen Size	3.52 Inch								
Display Resolution	240(H) x 360(V)								
Active Area	48.67(H) x 74.51(V)								
Pixel Pitch	0.207 x 0.207	mm							
Pixel Configuration	Rectangle								
Outline Dimension	54.41(H)×84.70(V)×0.85(D)	mm							
Weight	TBD	g							
	shore ownessing	, dw							

4

5. MECHANICAL DRAWING OF EPD MODULE

4

6. INPUT/OUTPUT PIN ASSIGNMENT

NO.	Name	I/O	Description	Remark
1	NC		No connection and do not connect with other NC pins	Keep open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC		No connection and do not connect with other NC pins	Keep open
5	VDHR	С	Positive Source driving voltage	
6	TSCL	0	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/0	I2C Interface to digital temperature sensor Date pin	
8	BS	Ι	Bus selection pin	Note 6-5
9	BUSY_N	0	Busy state output pin	Note 6-4
10	RST_N	Ι	Reset	Note 6-3
11	DC	Ι	Data /Command control pin	Note 6-2
12	CSB	Ι	Chip Select input pin	Note 6-1
13	SCL	Ι	serial clock pin (SPI)	
14	SDA	I/0	serial data pin (SPI)	
15	VDDIO	Р	Power for interface logic pins	
16	VDD	Ρ	Power Supply pin for the chip	
17	GND	Р	Ground	
18	VDDD	С	Core logic power pin	
19	VPP	Р	Power Supply for OTP Programming	
20	VSH	С	Positive source driver Voltage	
21	VGH	С	Positive Gate driving voltage	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Negative Gate voltage.	
24	VCOM	С	VCOM driving voltage	

Note 6-1: This pin (CSB) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CSB is pulled LOW.

Note 6-2: This pin (DC) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

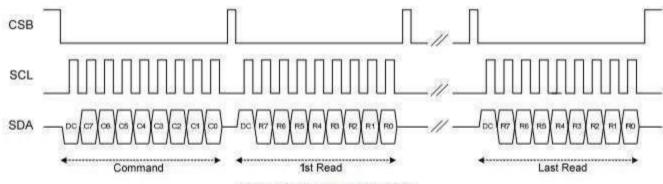
Note 6-3: This pin (RST_N) is reset signal input. The Reset is active low.

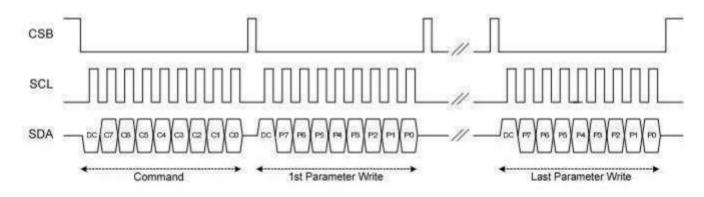
Note 6-4: This pin (BUSY_N) is Driver busy flag.L: Driver is Busy.

H: Host side can send command/data to driver. Note 6-5: This pin (BS) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI is selected.

7. HOST INTERFACE

The MSB bit of data will be output at SDA pin after the 1* SCL falling edge, if the 1* input data at SDA is high.




Figure: 3-wire SPI read operation

HT0001 provides 3-wire/4-wire serial interface for command and display data transferred from the MCU. The serial interface supports 8-bit mode. Data can be input/output by clocks while the chip is active (CSB =LOW). While input, data are written in order from MSB at the clock rising edge. When too many parameters are input, the chip accepts only defined parameters, and gnores undefined ones.

BS	Interface	CSB	DC	SCL	SDA
High	3-wire SPI	Available	Fix to GND	Available	Available
Low	4-wire SPI	Available	Available	Available	Available

3 wire SPI format

Data / Command is recognized with the first bit transferred. Data are transferred in the unit of 9 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 9 bits. (The serial counter is reset at the rising edge of the CSB signal.)

4 wire SPI format

Data / Command is recognized with DC pin. Data are transferred in the unit of 8 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 8 bits. (The serial counter is reset at the rising edge of the CSB signal.)

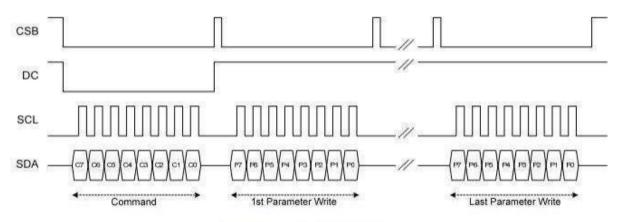
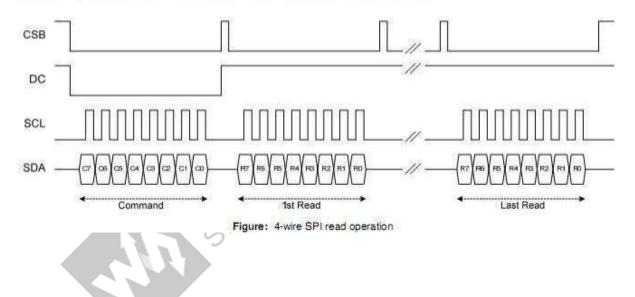



Figure: 4-wire SPI write operation

The MSB bit of data will be output at SDA pin after the CSB falling edge, if DC pin is High.

8. TEMPERATURE SENSOR OPERATION

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit D11 = 0, then

The temperature is positive and value (DegC) = + (Temperature value) / 16

2. If the Temperature value MSByte bit D11 = 1, then~

The temperature is negative and value (DegC) = (2's complement of Temperature value) / 16

12-bit binary (2's complement)	Hexadecimal Value	Decimal Value	Value [DegC]
0111 1111 0000	7F0	2032	127
0111 1110 1110	7EE	2030	126.875
0111 1110 0010	7E2	2018	126.125
0111 1101 0000	7D0	2000	125
0001 1001 0000	190	400	25
0000 0000 0010	002	2	0.125
0000 0000 0000	000	0	0
1111 1111 1110	FFE	-2	-0.125
1110 0111 0000	E70	-400	-25
1100 1001 0010	C92	-878	-54.875
1100 1001 0000	C90	-880	-55

9. COMMAND TABLE

COMMAND TABLE

W/R	: 0: Write Cycle 1: Read C	Cycle		C	/D:	0: C	omr	nan	d / 1	: Da	ta	D7~D0: -: Don't Care #: Valid Data	
#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	0	0	0	0	0	0	0		00н
1	Panel Setting (PSR)	0	1	#	#	#	#	#	#	#	#	RES[1:0],REG,KW/R,UD,SHL, SHD_N,RST_N	0Fн
		0	1			75	#	#	#	#	#	VCMZ ,TS_AUTO,TIEG,NORG,VCM_LUTZ	8DH
		0	0	0	0	0	0	0	0	0	1		01н
		0	1				#	1440		#	#	BD_EN ,VDS_EN, VDG_EN	03н
2	Power Setting (PWR)	0	1				#	#	#	#	#	VCOM_SLEW,VGHL_LV[3:0]	10H
2	rower setting (rwn)	0	1			#	#	#	#	#	#	VDH[5:0]	ЗFн
		0	1			#	#	#	#	#	#	VDL[5:0]	ЗFн
		0	1	#	#	#	#	#	#	#	#	OPEN,VDHR[6:0]	0DH
3	Power OFF (POF)	0	0	0	0	0	0	0	0	1	0		02н
4	Power OFF Sequence	0	0	0	0	0	0	0	0	1	1		03н
4	Setting (PFS)	0	1			#	#					T_VDS_OF[1:0]	00н
5	Power ON (PON)	0	0	0	0	0	0	0	1	0	0		04н
6	Power ON Measure (PMES)	0	0	0	0	0	0	0	1	0	1		05н
		0	0	0	0	0	0	0	1	1	0		06н
7	Ponctor Soft Start (PTST)	0	1	#	#	#	#	#	#	#	#	BT_PHA[7:0]	17н
a.	Booster Soft Start (BTST)		1	#	#	#	#	#	#	#	#	BT_PHB[7:0]	17н
		0	1	++		#	#	#	#	#	#	BT_PHC[5:0]	17н
8	Deep sleep (DSLP)	0	0	0	0	0	0	0	1	1	1		07н
0	Deep sleep (DSLF)	0	1	1	0	1	0	0	1	0	1	Check code	А5н
	Display Start	0	0	0	0	0	1	0	0	0	0	B/W or OLD Pixel Data (400x300):	10 н
9	Transmission 1 (DTM1,	0	1	#	#	#	#	#	#	#	#	KPXL[1:8]	00н
5	White/Black Data)	0	1	:	:	3		:	:		:	:	:
	(x-byte command)	0	1	#	#	#	#	#	#	#	#	KPXL[n-1:n]	<u>00н</u>
10	Data Stop (DSP)	0	0	0	0	0	1	0	0	0	1		11H
10		1	1	#		440		1440	-22			Data_flag	00н
11	Display Refresh (DRF)	0	0	0	0	0	1	0	0	1	0		12H
	Display Start	0	0	0	0	0	1	0	0	1	1	Red or NEW Pixel Data (240x480):	13н
12	transmission 2 (DTM2,	0	1	#	#	#	#	#	#	#	#	RPXL[1:8]	00н
	Red Data)	0	1	:	:	:	:	:	:	:	:		:
	(x-byte command)	0	1	#	#	#	#	#	#	#	#	RPXL[n-1:n]	00н
13	Auto Sequence (AUTO)	0	0	0	0	0	1	0	1	1	1		17H
		1	1	1	0	1	0	0	1	0	1	Check code	А5н
		0	0	0	0	1	0	0	0	0	0		20н
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	00н
	VCOM LUT (LUTC)	0	1		:	:	:	4	:	:	•	LEVEL SELECT1-1[1:0], FRAME NUMBER 1-1[5:0]	00н
14	(57-byte command,	0	1	:	:	:	:	:	:	:	:	LEVEL SELECT1-2[1:0], FRAME NUMBER 1-2[5:0]	00н
1995	structure of bytes 2~8	0	1	40	:	:	:	:	:	:	:	LEVEL SELECT2-1[1:0], FRAME NUMBER 2-1[5:0]	00н
	repeated 8 times)	0	1	:	1	:	:	:	:	:	:	LEVEL SELECT2-2[1:0], FRAME NUMBER 2-2[5:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 1 REPEAT TIMES [7:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	00н

9

3.52inch e-Paper (B) User Manual

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	0	1	0	0	0	0	1		21н
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	00н
	W2W LUT (LUTWW)	0	1	:	:	:	:	:	:	:	:	LEVEL SELECT1-1[1:0], FRAME NUMBER 1-1[5:0]	00н
	(43-byte command,	0	1		:	:	:	:	:	:	:	LEVEL SELECT1-2[1:0], FRAME NUMBER 1-2[5:0]	00н
15	structure of bytes 2~8	0	1	:	:	:	:	:	:	:	:	LEVEL SELECT2-1[1:0], FRAME NUMBER 2-1[5:0]	00н
	repeated 6 times)	0	1		:	:	:	:	:		:	LEVEL SELECT2-2[1:0], FRAME NUMBER 2-2[5:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 1 REPEAT TIMES [7:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	00н
		0	0	0	0	1	0	0	0	1	0		22H
1		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	00H
	K2W LUT (LUTKW /	0	1								:	LEVEL SELECT1-1[1:0], FRAME NUMBER 1-1[5:0]	00H
	LUTR)	0	1	+	÷	÷					:	LEVEL SELECT1-2[1:0], FRAME NUMBER 1-2[5:0]	00H
16	(57-byte command,	0	1	-							:	LEVEL SELECT2-1[1:0], FRAME NUMBER 2-1[5:0]	00H
	structure of bytes 2~8	0	1			•	:				:	LEVEL SELECT2-2[1:0], FRAME NUMBER 2-2[5:0]	00H
	repeated 8 times)	0	1	· #	#	· #	· #	•	· #	#	+	STATE 1 REPEAT TIMES [7:0]	00H
÷		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	00H
-		0	0	# 0	# 0	#	# 0	# 0	# 0	#	1	STATE 2 REPEAT TIMES [7.0]	23H
		0	1	#	#	- 55		#	#	#	#		
	W2K LUT (LUTWK /	0	1		-	#	#	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	-	GROUP REPEAT TIMES [7:0]	00H
	LUTW)	-		:	:	-	:	:	:	:	:	LEVEL SELECT1-1[1:0], FRAME NUMBER 1-1[5:0]	00H
17	(57-byte command,	0	1	8	:	:	:		:		:	LEVEL SELECT1-2[1:0], FRAME NUMBER 1-2[5:0]	00H
	structure of bytes 2~8	0	1	:	:	:	:	:	:	:	:	LEVEL SELECT2-1[1:0], FRAME NUMBER 2-1[5:0]	00H
	repeated 8 times)	0	1	:	:	:	:	:	:	:	:	LEVEL SELECT2-2[1:0], FRAME NUMBER 2-2[5:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 1 REPEAT TIMES [7:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	00н
		0	0	0	0	1	0	0	1	0	0		24н
	K2K LUT (LUTKK /	0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	00н
	LUTK)	0	1	+	+	+	+	+			;	LEVEL SELECT1-1[1:0], FRAME NUMBER 1-1[5:0]	00н
18	(57-byte command,	0	1	1	:	:	:	:	:	:	:	LEVEL SELECT1-2[1:0], FRAME NUMBER 1-2[5:0]	00н
	structure of bytes 2~8	0	1	:	:	:	:	:	:	:	1	LEVEL SELECT2-1[1:0], FRAME NUMBER 2-1[5:0]	00н
	repeated 8 times)	0	1	1	:	1	;	:	:	:	;	LEVEL SELECT2-2[1:0], FRAME NUMBER 2-2[5:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 1 REPEAT TIMES [7:0]	00н
		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	00H
		0	0	0	0	1	0	1	0	1	0		2AH
		0	1	#	1770	3770	1000		1772		574	EOPT	00н
10	LUT option (LUTOPT)	0	1	#	#	#	#	#	#	#	#	STATE_XON[7:0]	00н
15		0	1	#	#	#	#	#	#	#	#	STATE_XON[15:8]	00н
		0	1	#	#	#	#	#	#	#	#	GROUP_KWE[7:0]	FFH
		0	1							#	#	ATRED, NORED	00н
20	DLL control (DLL)	0	0	0	0	1	1	0	0	0	0		30H
20	PLL control (PLL)	0	1	ः स्टर		#	#	#	#	#	#	FRS[4:0]	06н
	T	0	0	0	1	0	0	0	0	0	0		40 H
21	Temperature Sensor Calibration (TSC)	1	1	#	#	#	#	#	#	#	#	D[10:3] / TS[7:0]	00н
	Calibration (150)	1	1	#	#	#						D[2:0] / -	00н
00	Temperature Sensor	0	0	0	1	0	0	0	0	0	1		41н
22	Selection (TSE)	0	1	#		· ·		#	#	#	#	TSE,TO[3:0]	00н
		0	0	0	1	0	0	0	0	1	0		42H
-	Temperature Sensor	0	1	#	#	#	#	#	#	#	#	WATTR[7:0]	00н
23	Write (TSW)	0	1	#	#	#	#	#	#	#	#	WMSB[7:0]	00н
					1 (3)	1 10	1.1	1.0	5.5	- 55	- 870		0.00000000

3.52inch e-Paper (B) User Manual

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	1	0	0	0	0	1	1		43н
24	Temperature Sensor	1	1	#	#	#	#	#	#	#	#	RMSB[7:0]	00н
	Read (TSR)	1	1	#	#	#	#	#	#	#	#	RLSB[7:0]	00н
	Panel Break Check	0	0	0	1	0	0	0	1	0	0		44H
25	(PBC)	1	1							44	#	PSTA	00н
1990	VCOM and data interval	0	0	0	1	0	1	0	0	0	0		50 H
26	setting (CDI)	0	1	#	#	#	#	#	#	#	#	VBD[1:0], DDX[1:0], CDI[3:0]	D7H
#	Command	W/R	-	-	-	-		D3	-	-	D0	Registers	Default
27	Lower Power Detection	0	0	0	1	0	1	0	0	0	1		51H
	(LPD)	1	1	0	1						#	LPD	01н 60н
28	TCON setting (TCON)	0	1	#	#	#	#	#	#	#	#	S2G[3:0], G2S[3:0]	22H
		0	0	0	1	1	0	0	0	0	1		61H
00	Resolution setting	0	1	#	#	#	#	#	0	0	0	HRES[7:3]	00н
29	(TRES)	0	1								#	VRES[8:0]	00н
		0	1	#	#	#	#	#	#	#	#	VRE3[0.0]	00H
		0	0	0	1	1	0	0	1	0	1		65H
30	Gate/Source Start setting (GSST)	0	1	#	#	#	#	#	0	0	0 #	HST[7:3]	00H
	(0331)	0	1	#	#	#	#	#	#	#	#	VST[8:0]	00н 00н
-		0	0	# 0	1	1	#	# 0	# 0	# 0	# 0		70H
		0	0	#	#	#	#	#	#	#	#	Reserved	00H
		1	1	#	#	#	#	#	#	#	#	CHIP_REV[7:0]	09н
31	Revision (REV)	1	1	#	#	#	#	#	#	#	#		FFH
		1	1			1	1	:	1	12	:	LUT_REV[23:0]	FFH
		1	1	#	#	#	#	#	#	#	#		FFH
		0	0	0	1	1	1	0	0	0	1		71 H
32	Get Status (FLG)	1	1		#	#	#	#	#	#	#	PTL_FLAG ,I ² C_ERR, I ² C_BUSYN, DATA_FLAG, PON, POF, BUSY_N	13H
	Cyclic Redundancy	0	0	0	1	1	0	0	0	1	0		72н
33	Check (CRC)	1	1	#	#	#	#	#	#	#	#	CRC_MSB[7:0]	00н
-		1	1	#	#	#	#	#	#	#	#	CRC_LSB[7:0]	00н
34	Auto Measurement VCOM (AMV)	0	0	1	0	0	0	0	0	0	0		80H
-		0	1	1	0	#	#	#	#	#	#	AMVT[1:0], XON,AMVS, AMV, AMVE	10н 81н
35	Read VCOM Value (VV)	1	1		#	#	#	#	#	#	#	VV[6:0]	00H
	VCOM_DC Setting	0	0	1	0	0	0	0	0	1	0	•••[0:0]	82H
36	(VDCS)	0	1		#	#	#	#	#	#	#	VDCS[6:0]	00н
		0	0	1	0	0	1	0	0	0	0		90H
		0	1	#	#	#	#	#	0	0	0	HRST[7:3]	00н
		0	1	#	#	#	#	#	1	1	1	HRED[7:3]	07н
37	Partial Window (PTL)	0	1								#	VRST[8:0]	00н
		0	1	#	#	#	#	#	#	#	#		00H
		0	1								#	VRED[8:0]	00H
		0	1	#	#	#	#	#	#	#	#	PT SCAN	00н 01н
38	Partial In (PTIN)	0	0	1	0	0	1	0	0	0	1		91H
39	Partial Out (PTOUT)	0	0	1	0	0	1	0	0	1	0		92H
40	Program Mode (PGM)	0	0	1	0	1	0	0	0	0	0		АОн
41	Active Programming (APG)	0	0	1	0	1	0	0	0	0	1		А1н
		0	0	1	0	1	0	0	0	1	0		А2н
	D. LOTD (DOTD)	1	1	#	#	#	#	#	#	#	#	Data of Address = 000h	N/A
42	Read OTP (ROTP)	1	1	:	:	:	:	:	:	:	:	;	N/A
		1	1	#	#	#	#	#	#	#	#	Data of Address = n	N/A
	OTP Programming	0	0	1	0	1	0	0	0	1	1		А3 н
43	Address	0	1				#	#	#	#	#	ST_ADDR[12:8]	00
	(PGAR)	0	1	#	#	#	#	#	#	#	#	ST_ADDR[7:0]	00

rdwore

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
46	LVD Voltage Select	0	0	1	1	1	0	0	1	0	0		Е4н
40	(LVSEL)	0	1	1225	1000	220	1225	1221	1220	#	#	LVD_SEL[1:0]	03н
47	Force Temperature	0	0	1	1	1	0	0	1	0	1		Е5н
4/	(TSSET)	0	1	#	#	#	#	#	#	#	#	TS_SET[7:0]	00н

Note: (1) All other register addresses are invalid or reserved by UltraChip, and should NOT be used.

(2) Any bits shown here as 0 must be written with a 0. All unused bits should also be set to zero. Device malfunction may occur if this is not done.

- (3) Commands are processed on the 'stop' condition of the interface.
- (4) Registers marked 'W/R' can be read, but the contents are written when the SPI command completes so the contents can be read and altered. The user can subsequently write the register to restore the contents following an SPI read.

shore owesome

10. COMMAND DESCRIPTION

COMMAND DESCRIPTION

W/R: 0: Write Cycle / 1: Read Cycle C/D: 0: Command / 1: Data D7-D0: -: Don't Care

35	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	0	0	0	0	0	0	0	0	
Settir	ng the panel	0	1	RES1	RES0	REG	KW/R	UD	SHL	SHD_N	RST_N	
	a mananin a data	0	1	0	0	0	VCMZ	TS_AUTO	TIEG	NORG	VC_LUT	Z
5[1:0]:	Display Resolut 00b: 240x120 (01b: 320x160 10b: 400x200 11b: 480x240		Active Active Active	gate chan gate chan gate chan	nels: G0 ~ nels: G0 ~	G319. Ac G399. Ac	tive source	e channels: e channels: e channels: e channels: e channels:	S0 ~ S15	59. 99.		
G) (G239	G0	C	3319	G0		G399	GO		G479	10
S0 S119			159			S0			SO			
									S239			
	00Ь			01b			10b			11b		
′R:	Black / White / 0: Pixel with B 1: Pixel with Bla	lack/Whi			de. (Defai	ult)						
	Gate Scan Dire		,	oue.								
	0: Scan down. 1: Scan up. (D						→ Gn-3 → . 2 →					
	Source Shift Di	rection										
	0: Shift left. 1: Shift right. (Default)						3 → → S → Sn-				
D_N:	Booster Switch											
	0: Booster OFF 1: Booster ON		i)									
	When SHD_N b						F, register	and SRAM	data will k	keep until \	/DD OFF	•
	And Source/Ga	te/border										
[_N:	And Source/Ga Soft Reset	le/border										

1: No effect (Default).

VCMZ:	VCOM Hi-Z state function
	0: No effect (Default)
	1 : VCOM is always floating
TS_AUTO:	Temperature sensor will be activated automatically one time.
	0: No effect
	1: Before enabling booster, Temperature Sensor will be activated automatically one time (Default).
TIEG:	VGL state function
	0: No effect
	1 : After power off booster, VGL will be tied to GND (Default).
NORG:	VCOM state during refreshing display
	0: No effect (Default)
	1: Expect refreshing display, VCOM is tied to GND.
VC_LUTZ:	VCOM state during refreshing display
	0: No effect
	1: After refreshing display, the output of VCOM is set to floating automatically (Default).

Note: Priority of Vcom setting: VCMZ > EOPT > NORG > VC_LUTZ

(2) POWER SETTING (PWR) (R01H)

	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
		0	0	0	0	0	0	0	0	0	1
		0	1	(1)	12	1 1 1	BD EN	1 10	2243	VDS_EN	VDG_EN
Selecting	Internal/External	0	1	-	-		VCOM_SLEW		VGHL	LV[3:0]	
Colooting	Power	0	1	-	2			VSH[
		0	1		-			VSL[
		0	1	OPTEN	् स ्			VDHR[6:0]	5.0]		
D EN:	Border LDO ena	1960) 195		OFTEN			8	VDTH [0.0]			
D_EN.	0 : Border LDO ena		(Defau	ult)							
	Border level s	election			01b: VDH		1	0b: VDL		11b:	VDHR
	1 : Border LDO e										
	Border level s	election	: 00b: \	VCOM	01b: VBH(VCOM-	VDL) 1	0b:VBL(VC	OM-VDF	ł) 11b:	VDHR
DS_EN:	Source power se										
	0 : External sour 1 : Internal DC/I						P (Default)				
10020 - 10000				rgeneratii	iy vən/və		n. (Delauli)				
DG_EN:	Gate power sele		KOM VC								
	0 : External gate 1 : Internal DC/I					GL (De	ault)				
	W: VCOM slew r			-		- 64					
					ansition. I	ne valu	e is likeu al I				
GHL_LV[3			evel se	election.							
	VGHL_L			GHL Voltag							
	0000 (Defa	ult)	VGH=2	OV, VGL=	-20V	_					
	0001			9V, VGL=	- Contraction of the second se	_					
	0010		VGH=1	8V, VGL=	-18V						
	0011			7V, VGL=							
	0100		VGH=1	6V, VGL=	-16V						
	0100										
	0100		VGH=1	5V, VGL=	-15V						
	2 - D.Z.			5V, VGL= 4V, VGL=							
	0101		VGH=1		-14V						
	0101 0110		VGH=1 VGH=1	4V, VGL=	-14V -13V						
	0101 0110 0111		VGH=1 VGH=1 VGH=1	4V, VGL= 3V, VGL=	-14V -13V -12V						
	0101 0110 0111 1000		VGH=1 VGH=1 VGH=1 VGH=1	4V, VGL= 3V, VGL= 2V, VGL=	-14V -13V -12V -11V						
SH[5:0]:	0101 0110 0111 1000 1001		VGH=1 VGH=1 VGH=1 VGH=1 VGH=1	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL=	-14V -13V -12V -11V -10V	/alue: 1	1 1111b)				
SH[5:0]:	0101 0110 0111 1000 1001 1010	ver sele	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL=	-14V -13V -12V -11V -10V		1 1111b) VSH	Voltage		/SH	Voltage
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000	ver sele Vol	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 ction <u>fo</u> tage	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000	-14V -13V -12V -11V -10V I.(Default v Volta 0 5.6	age V	VSH 10 0000	8.8 V	11	0000	12.0 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001	ver sele Vol 2.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 ction <u>fo</u> tage 4 V 5 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel 01 0000 01 0001	-14V -13V -12V -11V -10V .(Default v Volta 0 5.6 5.8	age V V	VSH 10 0000 10 0001	8.8 V 9.0 V	11	0000 0001	12.0 V 12.2 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0010	ver sele Vol 2. 2. 2.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 ction <u>fo</u> tage 4 V 5 V 3 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel 01 0000 01 0001 01 0010	-14V -13V -12V -11V -10V -10V -10V -10V -10V -10V -10	age V	VSH 10 0000 10 0001 10 0010	8.8 V 9.0 V 9.2 V	11 11 11	0000 0001 0010	12.0 V 12.2 V 12.4 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0010 00 0011	ver sele Vol 2. 2. 3.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 ction <u>fo</u> tage 4 V 5 V 3 V 0 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel 01 0000 01 0001 01 0010 01 0011	-14V -13V -12V -11V -10V .(Default v) 5.6 5.8) 6.0 6.2	Age V V V V	VSH 10 0000 10 0001 10 0010 10 0011	8.8 V 9.0 V 9.2 V 9.4 V	11 11 11 11	0000 0001 0010 0011	12.0 V 12.2 V 12.4 V 12.6 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0010 00 0011 00 0100	ver sele Vol 2. 2. 2. 3. 3.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 5 V 2 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0001 01 0010 01 0011 01 0100	-14V -13V -12V -12V -11V -10V (Default v) 5.6 5.8) 6.0 6.2) 6.4	age V V V V V V	VSH 10 0000 10 0001 10 0010 10 0011 10 0100	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V	11 11 11 11 11	0000 0001 0010 0011 0100	12.0 V 12.2 V 12.4 V 12.6 V 12.8 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0001 00 0010 00 0011 00 0100 00 0101	ver sele Vol 2. 2. 3. 3. 3.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 5 V 2 V 4 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0001 01 0010 01 0011 01 0100 01 0101	-14V -13V -12V -12V -11V -10V (Default v) 5.6 5.8) 6.0 6.2) 6.4 6.6	age V V V V V V V V V V V V V V V	VSH 10 0000 10 0001 10 0010 10 0010 10 0011 10 0100 10 0101	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V	11 11 11 11 11 11 11	0000 0001 0010 0011 0100 0101	12.0 V 12.2 V 12.4 V 12.6 V 12.8 V 13.0 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0010 00 0011 00 0100 00 0101 00 0110	ver sele Vol 2. 2. 3. 3. 3. 3.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 5 V 2 V 4 V 5 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0001 01 0010 01 0011 01 0100	-14V -13V -12V -12V -11V -10V L(Default v 0 5.6 5.8 0 6.0 6.2 0 6.4 6.6 0 6.8	age	VSH 10 0000 10 0001 10 0010 10 0011 10 0100 10 0101 10 0110	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V 10.0V	11 11 11 11 11 11 11 11	0000 0001 0010 0011 0100 0101 0110	12.0 V 12.2 V 12.4 V 12.6 V 12.8 V 13.0 V 13.2 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0001 00 0010 00 0011 00 0100 00 0101	ver sele Vol 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 5 V 2 V 4 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0001 01 0010 01 0011 01 0100 01 0101 01 0110	-14V -13V -12V -12V -11V -10V (Default v Volta 0 5.6 5.8 0 6.0 6.2 0 6.4 6.6 0 6.8 7.0	age	VSH 10 0000 10 0001 10 0010 10 0010 10 0011 10 0100 10 0101	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V	11 11 11 11 11 11 11 11 11	0000 0001 0010 0011 0100 0101	12.0 V 12.2 V 12.4 V 12.6 V 12.8 V 13.0 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pov VSH 00 0000 00 0001 00 0010 00 0011 00 0100 00 0111 00 0111	ver sele Vol 2. 2. 3. 3. 3. 3. 4.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 5 V 2 V 4 V 5 V 5 V 3 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0001 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111	-14V -13V -12V -12V -11V -10V (Default v Volta 0 5.6 5.8 0 6.0 6.2 0 6.4 6.6 0 6.8 7.0 0 7.2	age	VSH 10 0000 10 0001 10 0010 10 0011 10 0100 10 0101 10 0110 10 0111	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V 10.0V 10.2 V	11 11 11 11 11 11 11 11 11 11	0000 0001 0010 0011 0100 0101 0110 0111	12.0 V 12.2 V 12.4 V 12.6 V 12.8 V 13.0 V 13.2 V 13.4 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pow VSH 00 0000 00 0001 00 0010 00 0011 00 0110 00 0111 00 0100 00 1001 00 1001 00 1001	Ver sele Vol 2. 2. 3. 3. 3. 3. 4. 4. 4.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 2 V 4 V 5 V 5 V 5 V 2 V 4 V 5 V 5 V 2 V 4 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0001 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111 01 0100 01 1011 01 1000 01 1001 01 1010	-14V -13V -12V -11V -10V (Default v Volta) 5.6 5.8) 6.0 6.2) 6.4 6.6 0 6.8 7.0) 7.2 7.4) 7.6	age	VSH 10 0000 10 0001 10 0010 10 0011 10 0100 10 0101 10 0111 10 0111 10 1000 10 1001 10 1001	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V 10.0V 10.2 V 10.4 V 10.6 V	11 11 11 11 11 11 11 11 11 11 11 11	0000 0001 0010 0011 0100 0101 0101 0110 0111 1000 1001 1001 1001	12.0 V 12.2 V 12.4 V 12.6 V 13.0 V 13.2 V 13.4 V 13.6 V 13.8 V 13.8 V 14.0 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pow VSH 00 0000 00 0001 00 0010 00 0011 00 0101 00 0101 00 1001 00 1001 00 1001 00 1011	Ver sele Vol 2. 2. 3. 3. 3. 4. 4. 4. 4. 4.	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 2 V 4 V 5 V 2 V 4 V 5 V 2 V 4 V 5 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0011 01 0010 01 0011 01 01010 01 0111 01 0100 01 0111 01 1000 01 1011 01 1010 01 1011	-14V -13V -12V -11V -10V (Default v Volta) 5.6 5.8) 6.0 6.2) 6.4 6.6 0 6.4 6.6 0 6.8 7.0) 7.2 7.4) 7.6 7.8	age	VSH 10 0000 10 0001 10 0010 10 0011 10 0100 10 0101 10 0111 10 1000 10 1001 10 1001 10 1010 10 1011	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V 10.0V 10.2 V 10.4 V 10.6 V 10.8 V 11.0 V	11 11 11 11 11 11 11 11 11 11 11 11	0000 0001 0010 0011 0100 0101 0101 0110 0111 1000 1001 1001 1010 1011	12.0 V 12.2 V 12.4 V 12.6 V 13.0 V 13.2 V 13.4 V 13.6 V 13.8 V 14.0 V 14.2 V
SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pow VSH 00 0000 00 0001 00 0010 00 0110 00 0101 00 0111 00 1000 00 1001 00 1011 00 1001	Ver sele Vol 2.: 2.: 3.: 3.: 3.: 4.: 4.: 4.: 4.: 4.:	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction fo tage 4 V 5 V 2 V 4 V 5 V 2 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0010 01 0010 01 0101 01 0100 01 0111 01 0100 01 1010 01 1010 01 1011 01 1010 01 1011 01 1010	-14V -13V -12V -11V -10V (Default v Volta) 5.6 5.8) 6.0 6.2) 6.4 6.6 0 6.4 6.6 0 6.4 6.6 0 6.4 0 6.4 0 6.4 0 6.4 0 7.0 0 7.2 7.4 0 7.6 7.8 0 8.0 0 8.0	age age V I V I V I V I V I V I V I V I V I V I V I V I V I V I V I V I V I V I V I	VSH 10 0000 10 0001 10 0010 10 0011 10 0100 10 0101 10 0110 10 0111 10 1000 10 1001 10 1010 10 1011 10 1100	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V 10.0V 10.2 V 10.4 V 10.6 V 10.8 V 11.0 V 11.2 V	11 11	0000 0001 0010 0011 0100 0101 0101 0110 0111 1000 1001 1001 1010 1011 1100	12.0 V 12.2 V 12.4 V 12.6 V 13.0 V 13.2 V 13.4 V 13.6 V 13.8 V 14.0 V 14.2 V 14.4 V
'SH[5:0]:	0101 0110 0111 1000 1001 1010 Internal VSH pow VSH 00 0000 00 0001 00 0010 00 0011 00 0101 00 0101 00 1001 00 1001 00 1001 00 1011	ver sele Vol 2 2 3 3 3 4 4 4 4 4 4 5	VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 VGH=1 Ction <u>fo</u> tage 4 V 5 V 2 V 4 V 5 V 2 V 4 V 5 V 2 V 4 V 5 V	4V, VGL= 3V, VGL= 2V, VGL= 1V, VGL= 0V, VGL= r B/W pixel VSH 01 0000 01 0011 01 0010 01 0011 01 01010 01 0111 01 0100 01 0111 01 1000 01 1011 01 1010 01 1011	-14V -13V -12V -11V -10V .(Default v .(Default v	age age V I	VSH 10 0000 10 0001 10 0010 10 0011 10 0100 10 0101 10 0111 10 1000 10 1001 10 1001 10 1010 10 1011	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V 10.0V 10.2 V 10.4 V 10.6 V 10.8 V 11.0 V	11 11	0000 0001 0010 0011 0100 0101 0101 0110 0111 1000 1001 1001 1010 1011	12.0 V 12.2 V 12.4 V 12.6 V 13.0 V 13.2 V 13.4 V 13.6 V 13.8 V 14.0 V 14.2 V

VSL[5:0]: Internal VSL power selection for B/W pixel. (Default value: 11 1111b)

3.52inch e-Paper (B) User Manual

VSL	Voltage	VSL	Voltage	VSL	Voltage	VSL	Voltage
00 0000	-2.4 V	01 0000	-5.6 V	10 0000	-8.8 V	11 0000	-12.0 V
00 0001	-2.6 V	01 0001	-5.8 V	10 0001	-9.0 V	11 0001	-12.2 V
00 0010	-2.8 V	01 0010	-6.0 V	10 0010	-9.2 V	11 0010	-12.4 V
00 0011	-3.0 V	01 0011	-6.2 V	10 0011	-9.4 V	11 0011	-12.6 V
00 0100	-3.2 V	01 0100	-6.4 V	10 0100	-9.6 V	11 0100	-12.8 V
00 0101	-3.4 V	01 0101	-6.6 V	10 0101	-9.8 V	11 0101	-13.0 V
00 0110	-3.6 V	01 0110	-6.8 V	10 0110	-10.0V	11 0110	-13.2 V
00 0111	-3.8 V	01 0111	-7.0 V	10 0111	-10.2 V	11 0111	-13.4 V
00 1000	-4.0 V	01 1000	-7.2 V	10 1000	-10.4 V	11 1000	-13.6 V
00 1001	-4.2 V	01 1001	-7.4 V	10 1001	-10.6 V	11 1001	-13.8 V
00 1010	-4.4 V	01 1010	-7.6 V	10 1010	-10.8 V	11 1010	-14.0 V
00 1011	-4.6 V	01 1011	-7.8 V	10 1011	-11.0 V	11 1011	-14.2 V
00 1100	-4.8 V	01 1100	-8.0 V	10 1100	-11.2 V	11 1100	-14.4 V
00 1101	-5.0 V	01 1101	-8.2 V	10 1101	-11.4 V	11 1101	-14.6 V
00 1110	-5.2 V	01 1110	-8.4 V	10 1110	-11.6 V	11 1110	-14.8 V
00 1111	-5.4 V	01 1111	-8.6 V	10 1111	-11.8 V	11 1111	-15.0 V

VDHR[5:0]: Internal VDHR power selection for Red pixel. (Default value: 001101b)

00 0000 00 0001 00 0010 00 0011 00 0100 00 0101 00 0110 00 0111 00 1000	2.4 V 2.6 V 2.8 V 3.0 V 3.2 V 3.4 V 3.6 V 3.8 V 4.0 V	01 0000 01 0001 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111	5.6 V 5.8 V 6.0 V 6.2 V 6.4 V 6.6 V 6.8 V	10 0000 10 0001 10 0010 10 0011 10 0100 10 0101	8.8 V 9.0 V 9.2 V 9.4 V 9.6 V 9.8 V	11 0000 11 0001 11 0010 11 0011 11 0100 11 0101	12.0 V 12.2 V 12.4 V 12.6 V 12.8 V
00 0010 00 0011 00 0100 00 0101 00 0110 00 0111	2.8 V 3.0 V 3.2 V 3.4 V 3.6 V 3.8 V	01 0010 01 0011 01 0100 01 0101 01 0110	5.8 V 6.0 V 6.2 V 6.4 V 6.6 V	10 0010 10 0011 10 0100 10 0101	9.2 V 9.4 V 9.6 V	11 0010 11 0011 11 0100	12.4 V 12.6 V 12.8 V
00 0011 00 0100 00 0101 00 0110 00 0111	3.0 V 3.2 V 3.4 V 3.6 V 3.8 V	01 0011 01 0100 01 0101 01 0110	6.2 V 6.4 V 6.6 V	10 0011 10 0100 10 0101	9.4 V 9.6 V	11 0011 11 0100	12.6 V 12.8 V
00 0100 00 0101 00 0110 00 0111	3.2 V 3.4 V 3.6 V 3.8 V	01 0100 01 0101 01 0110	6.4 V 6.6 V	10 0100 10 0101	9.6 V	11 0100	12.8 V
00 0101 00 0110 00 0111	3.4 V 3.6 V 3.8 V	01 0101 01 0110	6.6 V	10 0101		and the second se	
00 0110 00 0111	3.6 V 3.8 V	01 0110			9.8 V	11 0101	10011
00 0111	3.8 V		6.8 V	10.0110			13.0 V
		01 0111		10 0110	10.0 V	11 0110	13.2 V
00 1000	40V	010111	7.0 V	10 0111	10.2 V	11 0111	13.4 V
001000	4.0 V	01 1000	7.2 V	10 1000	10.4 V	11 1000	13.6 V
00 1001	4.2 V	01 1001	7.4 V	10 1001	10.6 V	11 1001	13.8 V
00 1010	4.4 V	01 1010	7.6 V	10 1010	10.8 V	11 1010	14.0 V
00 1011	4.6 V	01 1011	7.8 V	10 1011	11.0 V	11 1011	14.2 V
00 1100	4.8 V	01 1100	8.0 V	10 1100	11.2 V	11 1100	14.4 V
00 1101	5.0 V	01 1101	8.2 V	10 1101	11.4 V	11 1101	14.6 V
00 1110	5.2 V	01 1110	8.4 V	10 1110	11.6 V	11 1110	14.8 V
00 1111	5.4 V	01 1111	8.6 V	10 1111	11.8 V	11 1111	15.0 V
	S						
	ò						

OPTEN: 1 enable step-0.1V voltage selection.

VDHR	Voltage	VDHR	Voltage	VDHR	Voltage	VDHR	Voltage
1000 0000	2.4 V	1010 0000	5.6 V	1100 0000	8.8 V	1110 0000	12 V
1000 0001	2.5 V	1010 0001	5.7 V	1100 0001	8.9 V	1110 0001	12.1 V
1000 0010	2.6 V	1010 0010	5.8 V	1100 0010	9.0 V	1110 0010	12.2 V
1000 0011	2.7 V	1010 0011	5.9 V	1100 0011	9.1 V	1110 0011	12.3 V
1000 0100	2.8 V	1010 0100	6.0 V	1100 0100	9.2 V	1110 0100	12.4 V
1000 0101	2.9 V	1010 0101	6.1 V	1100 0101	9.3 V	1110 0101	12.5 V
1000 0110	3.0 V	1010 0110	6.2 V	1100 0110	9.4 V	1110 0110	12.6 V
1000 0111	3.1 V	1010 0111	6.3 V	1100 0111	9.5 V	1110 0111	12.7 V
1000 1000	3.2 V	1010 1000	6.4 V	1100 1000	9.6 V	1110 1000	12.8 V
1000 1001	3.3 V	10101001	6.5 V	1100 1001	9.7 V	1110 1001	12.9 V
1000 1010	3.4 V	1010 1010	6.6 V	1100 1010	9.8 V	1110 1010	13.0 V
1000 1011	3.5 V	1010 1011	6.7 V	1100 1011	9.9 V	1110 1011	13.1 V
1000 1100	3.6 V	1010 1100	6.8 V	1100 1100	10.0 V	1110 1100	13.2 V
1000 1101	3.7 V	1010 1101	6.9 V	1100 1101	10.1 V	1110 1101	13.3 V
1000 1110	3.8 V	1010 1110	7.0 V	1100 1110	10.2 V	1110 1110	13.4 V
1000 1111	3.9 V	1010 1111	7.1 V	1100 1111	10.3 V	1110 1111	13.5 V
1001 0000	4.0 V	1011 0000	7.2 V	1101 0000	10.4 V	1111 0000	13.6 V
1001 0001	4.1 V	1011 0001	7.3 V	1101 0001	10.5 V	1111 0001	13.7 V
1001 0010	4.2 V	1011 0010	7.4 V	1101 0010	10.6 V	1111 0010	13.8 V
1001 0011	4.3 V	1011 0011	7.5 V	1101 0011	10.7 V	1111 0011	13.9 V
1001 0100	4.4 V	1011 0100	7.6 V	1101 0100	10.8 V	1111 0100	14.0 V
1001 0101	4.5 V	1011 0101	7.7 V	1101 0101	10.9 V	1111 0101	14.1 V
1001 0110	4.6 V	1011 0110	7.8 V	1101 0110	11.0 V	1111 0110	14.2 V
1001 0111	4.7 V	1011 0111	7.9 V	1101 0111	11.1 V	1111 0111	14.3 V
1001 1000	4.8 V	1011 1000	8.0 V	1101 1000	11.2 V	1111 1000	14.4 V
1001 1001	4.9 V	1011 1001	8.1 V	1101 1001	11.3 V	1111 1001	14.5 V
1001 1010	5.0 V	1011 1010	8.2 V	1101 1010	11.4 V	1111 1010	14.6 V
1001 1011	5.1 V	1011 1011	8.3 V	1101 1011	11.5 V	1111 1011	14.7 V
1001 1100	5.2 V	1011 1100	8.4 V	11011100	11.6 V	1111 1100	14.8 V
1001 1101	5.3 V	1011 1101	8.5 V	1101 1101	11.7 V	1111 1101	14.9 V
1001 1110	5.4 V	1011 1110	8.6 V	1101 1110	11.8 V	1111 1110	15.0 V
1001 1111	5.5 V	1011 1111	8.7 V	1101 1111	11.9 V		

(3) POWER OFF (POF) (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning OFF the power	0	0	0	0	0	0	0	0	1	0	02

After the Power OFF command, the driver will be powered OFF. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn off booster, controller, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD turned OFF or Deep Sleep Mode. Source/Gate/Border/VCOM will be released to floating.

(4) POWER OFF SEQUENCE SETTING (PFS) (R03H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	0	1	1	03+
Setting Power OFF sequence	0	1	(*)	14	T_VDS_	OFF[1:0]	-				00+

T_VDS_OFF[1:0]: Source to gate power off interval time.

00b: 1 frame (Default)

It) 01b: 2 frames

10b: 3 frames

11b: 4 frame

(5) POWER ON (PON) (REGISTER: R04H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning ON the power	0	0	0	0	0	0	0	1	0	0	04

After the Power ON command, the driver will be powered ON. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn on booster, controller, regulators, and temperature sensor will be activated for one-time sensing before enabling booster. When all voltages are ready, the BUSY_N signal will return to high.

(6) POWER ON MEASURE (PMES) (R05H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1	0	1

This command enables the internal bandgap, which will be cleared by the next POF.

(7) BOOSTER SOFT START (BTST) (R06H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1	1	0
Starting data transmission	0	1	BT_PHA7	and a	BT_PHA5	BT_PHA4		BT_PHA2		BT_PHA0
Clarting data transmission	0	1	BT_PHB7		BT_PHB5	-	 VEDEC — VLED VEDEC IS 			BT_PHB0
	0	1	-	-	BI_PHC5	BT_PHC4	BT_PHC3	BI_PHC2	BI_PHC1	BT_PHC0
[PHA[7:6]: Soft start period of										
00b: 10mS	011	o: 20m	S	10b:	30mS		11b: 40mS			
<pre>TPHA[5:3]: Driving strength o</pre>	f phase	Α								
000b: strength 1	00	1b: stre	ngth 2	010b	: strength	3	011b: stren	gth 4		
100b: strength 5	10	1b: stre	ngth 6	110b	: strength 7	7	111b: stren	gth 8 (stro	ngest)	
FPHA[2:0]: Minimum OFF time	e settin	g of GI	OR in phas	e A						
000b: 0.27uS	1000	1b: 0.34			: 0.40uS		011b: 0.54u			
100b: 0.80uS	10	1b: 1.54	4uS	110b	: 3.34uS		111b: 6.58	uS		
FPHB[7:6]: Soft start period of	phase	В.								
00b: 10mS	011	o: 20m	S	10b:	30mS		11b: 40mS			
[PHB[5:3]: Driving strength of	phase	В								
000b: strength 1	00	1b: stre	ngth 2	010b	: strength	3	011b: stren	gth 4		
100b: strength 5	10	1b: stre	ngth 6	110b	: strength 7	7	111b: stren	gth 8 (stro	ngest)	
TPHB[2:0]: Minimum OFF time	e settin	g of GI	OR in phas	e B						
000b: 0.27uS		1b: 0.34		010b	: 0.40uS	1	011b: 0.54ı	IS		
100b: 0.80uS	10	1b: 1.54	4uS	110b	: 3.34uS		111b: 6.58	uS		
FPHC[5:3]: Driving strength of	phase	С								
000b: strength 1		1b: stre			: strength		011b: stren			
100b: strength 5	10	1b: stre	ngth 6	110b	: strength 7	7	111b: stren	gth 8 (stro	ngest)	
FPHC[2:0]: Minimum OFF time	e settin	g of GI	OR in phas	e C						
000b: 0.27uS		1b: 0.34			: 0.40uS		011b: 0.54u			
100b: 0.80uS	10	1b: 1.54	4uS	110b	: 3.34uS		111b: 6.58	uS		

(8) DEEP SLEEP (DSLP) (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Deen Clean	0	0	0	0	0	0	0	1	1	1
Deep Sleep	0	1	1	0	1	0	0	1	0	1

After this command is transmitted, the chip will enter Deep Sleep Mode to save power. Deep Sleep Mode will return to Standby Mode by hardware reset. The only one parameter is a check code, the command will be executed if check code = 0xA5.

(9) DATA START TRANSMISSION 1 (DTM1) (R10H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	0	0	10
Charting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	00
Starting data transmission	0	1			:	:	4	:	:	:	00
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	00

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "OLD" data to SRAM.

In KWR mode, this command writes "B/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

(10) DATA STOP (DSP) (R11H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Otopping data transmission	0	0	0	0	0	1	0	0	0	1	11H
Stopping data transmission	1	1	data_flag		191		(=)	195	 1		00H

Check the completeness of data. If data is complete, start to refresh display.

Data_flag: Data flag of receiving user data.

0: Driver didn't receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (R10h) or "Data Stop" (R11h) commands and when data_flag=1, the refreshing of panel starts and BUSY_N signal will become "0".

(11) DISPLAY REFRESH (DRF) (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Refreshing the display	0	0	0	0	0	1	0	0	1	0	12

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.

After Display Refresh command, BUSY_N signal will become "0" and the refreshing of panel starts.

The waiting interval form BUSY_N falling to the first FLG command must be larger than 200uS.

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	1	0	0	1	1
Otantian data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8
Starting data transmission	0	1	:	:	:	:	:	:	:	:
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)

(12) DATA START TRANSMISSION 2 (DTM2) (R13H)

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "NEW" data to SRAM.

In KWR mode, this command writes "RED" data to SRAM.

(13) AUTO SEQUENCE (AUTO) (R17H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	٦
Auto Coguenes	0	0	0	0	0	1	0	1	1	1	٦
Auto Sequence	0	1	1	0	1	0	0	1	0	1	7

The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to avoid unnecessary power consumption and reduce the complexity of host's control procedure. The sequence contains several operations, including PON, DRF, POF, DSLP. shore one some his

AUTO $(0x17) + Code(0xA5) = (PON \rightarrow DRF \rightarrow POF)$

AUTO $(0x17) + Code(0xA7) = (PON \rightarrow DRF \rightarrow POF \rightarrow DSLP)$

(14) VCOM LUT (LUTC) (R20H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	0	2
	0	1			G	roup Repe	eat Time [7	:0]			0
Build Look-up Table for VCOM	0	0 1 Level Select 1-1[1:0] Frame number 1-1 [5:0] 0 1 Level Select 1-2[1:0] Frame number 1-2 [5:0] 0 1 Level Select 2-1[1:0] Frame number 2-1 [5:0]								0	
(57-byte command,	0	0 1 Level Select 1-2[1:0] Frame number 1-2 [5:0]								0	
structure of bytes 2~8	0	1	Level Sel	ect 2-1[1:0]		F	rame num	ber 2-1 [5:	0]		0
repeated 8 times)	0	1	Level Sel	ect 2-2[1:0]		F	rame num	ber 2-2 [5:	0]		0
	0	1			S	tate 1 repe	at times [7	:0]			0
	0	1			S	tate 2 repe	at times [7	:0]			0

This command stores VCOM Look-Up Table with 8 groups of data. This LUT includes 8 kinds of groups; each group is of 7 bytes. Each group is divied to 2states and group repeat number. Each state made up 2 phases and each phase is combined with repeat time, level selection and frame number.

Bytes 2, 9, 16, 23 , 30,... :

Group repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 3~6, 10~13, 17~20, 24~27, 31~34.....:

[D7:D6] Level selection

00b: VCOM_DC 01b: VSH+VCOM_DC (VCOMH)

10b: VSL-VCOM_DC (VCOML)

11b: Floating

[D5:D0] Number of Frames (state1 & state2)

00 0000b: 0 time

: : : :

11 1111b: 63 times

Bytes 7~8, 14~15, 21~22, 28~29, 35~36,..:

State 1 & State 2 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: 1 ~ 255times

If KW/R=0 (KWR mode), all 8 groups are used.

If KW/R=1 (KW mode), only 6 groups are used.

(15) W2W LUT (LUTWW) (R21H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	1	2
1990 - 50 - 87	0	1			G	roup Repe	eat Time [7	:0]			
Build	0 1 Level Select 1-1[1:0] Frame number 1-1 [5:0]								0]		0
White Look-up Table for W2W	0	1	Level Sel	ect 1-2[1:0]		F	rame num	ber 1-2 [5:	0]		
(43-byte command, structure of bytes 2~8	0	1	Level Sel	ect 2-1[1:0]		F	rame num	ber 2-1 [5:	0]		
repeated 6 times)	0	1	Level Sel	ect 2-2[1:0]		F	rame num	ber 2-2 [5:	0]		
ropoulou o linioo)	0	1			S	tate 1 repe	at times [7	[:0]			
	0	1			S	tate 2 repe	at times [7	[:0]			

This command stores LUTW2W Look-Up Table with 6 groups of data. This LUT includes 6 kinds of groups; each group is of 7 bytes. Each group is divied to 2states and group repeat number. Each state made up 2 phases and each phase is combined with repeat time, level selection and frame number.

Bytes 2, 9, 16, 23 , 30, ... :

Group repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 3~6, 10~13, 17~20, 24~27, 31~34.....:

[D7:D6] Level selection

00b: 0V

01b: VSH

10b: VSL

11b: VDHR

[D5:D0] Number of Frames (state1 & state2)

00 0000b: 0 time

: : : :

11 1111b: 63 times

Bytes 7~8, 14~15, 21~22, 28~29, 35~36,..:

State 1 & State 2 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: 1 ~ 255times

If KW/R=0 (KWR mode), LUTWW is not used.

If KW/R=1 (KW mode), LUTWW is used.

(16) K2W LUT (LUTKW / LUTR) (R22H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	0	2
	0	1			G	roup Repe	eat Time [7	:0]			0
Build Look-up Table for K2W	0	1	Level Sel	ect 1-1[1:0]		F	rame num	ber 1-1 [5:	:0]		0
or Red	0	1	Level Sel	Level Select 1-2[1:0] Frame number 1-2 [5:0]							0
(57-byte command, structure of bytes 2~8	0	1	Level Sel	ect 2-1[1:0]		F	rame num	ber 2-1 [5:	.0]		0
repeated 8 times)	0	1	Level Sel	ect 2-2[1:0]		F	rame num	ber 2-2 [5:	.0]		0
repouted o linica)	0	1			S	tate 1 repe	at times [7	:0]			0
	0	1			S	tate 2 repe	at times [7	[:0]			0

This command stores LUTKW / LUTR Look-Up Table with 8 groups of data. This LUT includes 8 kinds of groups; each group is of 7 bytes. Each group is divied to 2states and group repeat number. Each state made up 2 phases and each phase is combined with repeat time, level selection and frame number.

Bytes 2, 9, 16, 23 , 30,... :

Group repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 3~6, 10~13, 17~20, 24~27, 31~34.....:

[D7:D6] Level selection

00b: 0V 01b: VSH

10b: VSL

11b: VDHR

[D5:D0] Number of Frames (state1 & state2)

00 0000b: 0 time

.

11 1111b: 63 times

.

Bytes 7~8, 14~15, 21~22, 28~29, 35~36,...:

State 1 & State 2 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: 1 ~ 255times

If KW/R=0 (KWR mode), all 8 groups are used.

If KW/R=1 (KW mode), only 6 groups are used.

(17) W2K LUT (LUTWK / LUTW) (R23H)

This command builds Look-up Table for White-to-Black. Please refer to K2W LUT (LUTKW/LUTR) for similar definition details. Regardless of KW/R=0 or KW/R=1, LUTWK/LUTW is used.

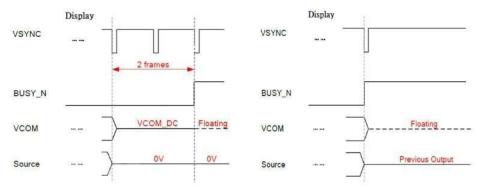
(18) K2K LUT (LUTKK / LUTK) (R24H)

This command builds Look-up Table for Black-to-Black. Please refer to K2W LUT (LUTKW/LUTR) for similar definition details. Regardless of KW/R=0 or KW/R=1, LUTKK/LUTK is used.

Note: All LUTs are independent of each other and could be deal with separately. If waveform time is different for each LUT, IC would elect longest LUT as refresh time and fill 0 (GND) to remaining refresh time for other LUT.

(19) LUT OPTION (LUTOPT) (R2AH)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	1	0	1	0	2AH
	0	1	EOPT	ESO		1.				1.	00н
	0	1				STATE_	XON[7:0]				00н
LUT Option	0	1				STATE_X	KON[15:8]				00н
1	0	1				GROUP	KWE[7:0]			0	FFH
	0	1					-		ATRED	NORED	00н


This command sets XON and the several options of KWR mode's LUT. .

EOPT: LUT sequence option

0: Disable 1: Enable

EOPT=0

EOPT=1

ESO: LUT sequence option 2

STATE_XON[15:0]:

All Gate ON control (Each bit controls one state, STATE_XON [0] for Group-1/State-1, STATE_XON [1] for Group-1/State-2)

0000 0000 0000 0000b: no All-Gate-ON

0000 0000 0000 0001b: Group-1/State-1 All-Gate-ON

0000 0000 0011b: Group-1/State-1 and Group-1/State-2 All-Gate-ON

0000 0000 0000 0111b: Group-1/State-1, Group-1/State-2 and Group-2/State-1 All-Gate-ON

: :

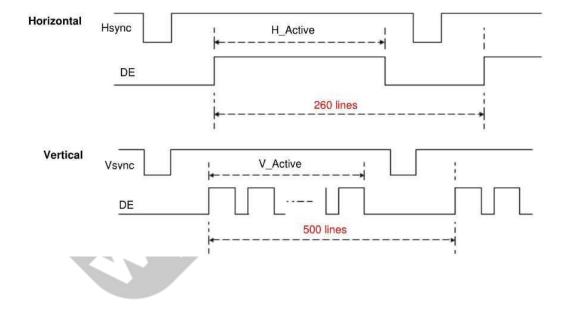
GROUP_KWE[7:0]:

The control bits are only available when KW/R=0 (KWR mode) and (ATRED | NORED)=1

There are only 8 groups in the K/W LUT. Each bit controls one group.

1111 1111b: all groups are executed sequentially.

- 1111 1110b: only Group-1 is bypassed.
- 1111 1100b: Group-1 and Group-2 are bypassed.
 - 15 1
- ATRED: Automatic mode. The option is only available when KW/R=0
- **NORED:** No Red data. The option is only available when KW/R=0


(20) PLL CONTROL (PLL) (R30H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Controlling DL	0	0	0	0	1	1	0	0	0	0
Controlling PLL	0	1	-	-	-			FRS[4:0]		

The command controls the PLL clock frequency. The PLL structure must support the following frame rates:

FMR[4:0]: Frame rate setting

FRS	Frame rate	FRS	Frame rate
00000	5Hz	10000	85Hz
00001	10Hz	10001	90Hz
00010	15Hz	10010	95Hz
00011	20Hz	10011	100Hz
00100	25Hz	10100	105Hz
00101	30Hz	10101	110Hz
00110	35Hz	10110	115Hz
00111	40Hz	10111	120Hz
01000	45Hz	11000	130Hz
01001	50Hz	11001	140Hz
01010	55Hz	11010	150Hz
01011	60Hz	11011	160Hz
01100	65Hz	11100	170Hz
01101	70Hz	11101	180Hz
01110	75Hz	11110	190Hz
01111	80Hz	11111	200Hz

(21) TEMPERATURE SENSOR CALIBRATION (TSC) (R40H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	0	0	0	0	0	0
Sensing Temperature	1	1	D10/TS7	D9/TS6	D8/TS5	D7/TS4	D6 / TS3	D5 / TS2	D4 / TS1	D3 / TS0
a 8	1	1	D2	D1	D0	2	-	-	-	-

This command enables internal or external temperature sensor, and reads the result.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

TS[7:0]/D[10:3]	Temperature (°C)	TS[7:0]/D[10:3]	Temperature(°C)	TS[7:0]/D[10:3]	Temperature(°C)
1110_0111	-25	0000_0000	0	0001_1001	25
1110_1000	-24	0000_0001	1	0001_1010	26
1110_1001	-23	0000_0010	2	0001_1011	27
1110 1010	-22	0000 0011	3	0001_1100	28
1110_1011	-21	0000_0100	4	0001_1101	29
1110_1100	-20	0000_0101	5	0001_1110	30
1110 1101	-19	0000 0110	6	0001_1111	31
1110 1110	-18	0000 0111	7	0010 0000	32
1110_1111	-17	0000 1000	8	0010_0001	33
1111 0000	-16	0000 1001	9	0010 0010	34
1111_0001	-15	0000 1010	10	0010 0011	35
1111 0010	-14	0000 1011	11	0010 0100	36
1111 0011	-13	0000 1100	12	0010 0101	37
1111_0100	-12	0000_1101	13	0010_0110	38
1111 0101	-11	0000 1110	14	0010 0111	39
1111 0110	-10	0000 1111	15	0010 1000	40
1111 0111	-9	0001 0000	16	0010 1001	41
1111 1000	-8	0001 0001	17	0010 1010	42
1111_1001	-7	0001 0010	18	0010_1011	43
1111 1010	-6	0001 0011	19	0010 1100	44
1111_1011	-5	0001_0100	20	0010_1101	45
1111_1100	-4	0001_0101	21	0010_1110	46
1111_1101	-3	0001_0110	22	0010_1111	47
1111_1110	-2	0001_0111	23	0011_0000	48
1111 1111	-1	0001_1000	24	0011_0001	49

(22) TEMPERATURE SENSOR ENABLE (TSE) (R41H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enable Temperature Sensor	0	0	0	1	0	0	0	0	0	1	41
/Offset	0	1	TSE	-	-	- 4		TO	[3:0]		00

This command selects Internal or External temperature sensor.

Internal temperature sensor switch

0: Enable (default)

TO[3:0]: Temperature offset.

TSE:

TO[3:0]	Calculation
0000 b	+0 (Default)
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

1: Disable; using external sensor.

TO[3:0]	Calculation
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

(23) TEMPERATURE SENSOR WRITE (TSW) (R42H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	1	0	42H
Write External Temperature	0	1				WATT	R[7:0]				00H
Sensor	0	1				WMS	B[7:0]				00н
	0	1				WLS	B[7:0]				00н

This command writes the temperature sensed by the temperature sensor.

WATTR[7:6]: I2C Write Byte Number

00b : 1 byte (head byte only)

01b : 2 bytes (head byte + pointer)

10b : 3 bytes (head byte + pointer + 1st parameter) 11b : 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

WATTR[5:3]: User-defined address bits (A2, A1, A0)

WATTR[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor

WLSB[7:0]: LSByte of write-data to external temperature sensor

(24) TEMPERATURE SENSOR READ (TSR) (R43H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
8 I.F. I.F. I.F. I.F. I.F. I.F. I.F. I.F	0	0	0	1	0	0	0	0	1	1	43
Read External Temperature Sensor	1	1				RMS	B[7:0]				00
Sensor	1	1				RLS	B[7:0]				00

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

(25) PANEL GLASS CHECK (PBC) (R44H)

Action	R/W	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Ohaali Danal Olaaa	W	0	0	1	0	0	0	1	0	0
Check Panel Glass	R	1	3 8 13	18	-					PSTA

This command is used to enable panel check, and to disable after reading result.

PSTA: 0: Panel check fail (panel broken)

1: Panel check pass

(26) VCOM AND DATA INTERVAL SETTING (CDI) (R50H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Interval between	0	0	0	1	0	1	0	0	0	0	5(
VCOM and Data	0	1	VBD	0[1:0]	DD)	([1:0]		CD	[3:0]		D

This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync).

VBD[1:0]: Border data selection

KWR mode (KW/R=0)

DDX[0]	VBD[1:0]	LUT
	00	Floating
	01	LUTR
0 -	10	LUTW
	11	LUTK
	00	LUTK
1 (Default)	01	LUTW
	10	LUTR
	11	Floating

KW mode (KW/R=1)

DDX[0]	VBD[1:0]	LUT
	00	Floating
	01	LUTKW $(1 \rightarrow 0)$
0 -	10	LUTWK (0 → 1)
	11	Floating
	00	Floating
1	01	LUTWK $(1 \rightarrow 0)$
(Default)	10	LUTKW (0 → 1)
	11	Floating

DDX[1:0]: Data polality.

Under KWR mode (KW/R=0):

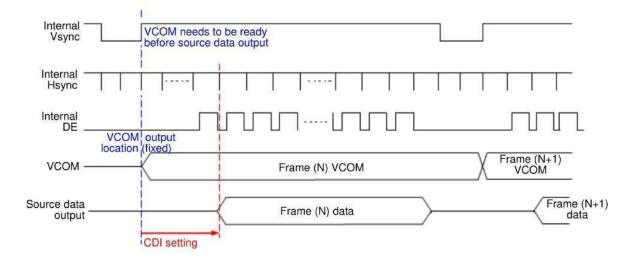
DDX[1] is for RED data. DDX[0] is for B/W data,

DDX[1:0]	Data {Red, B/W}	LUT		
	00	LUTW		
00	01	LUTK		
00	10	LUTR		
	11	LUTR		
	00	LUTK		
01	01	LUTW		
(Default)	10	LUTR		
ALTER POLITICAL A	11	LUTR		

DDX[1:0]	Data {Red, B/W}	LUT
1000 1000	00	LUTR
10	01	LUTR
10	10	LUTW
	11	LUTK
	00	LUTR
	01	LUTR
11	10	LUTK
	11	LUTW

Under KW mode (KW/R=1):

DDX[1]=0 is for KW mode with NEW/OLD, DDX[1]=1 is for KW mode without NEW/OLD.

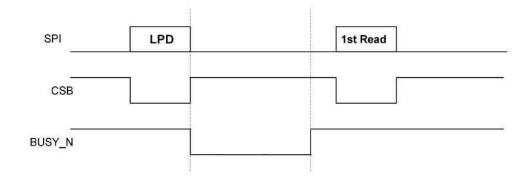

DDX[1:0]	Data {NEW, OLD}	LUT
	00	LUTWW $(0 \rightarrow 0)$
00	01	LUTKW $(1 \rightarrow 0)$
	10	LUTWK $(0 \rightarrow 1)$
	11	LUTKK $(1 \rightarrow 1)$
	00	LUTKK $(0 \rightarrow 0)$
01 (Default)	01	LUTWK $(1 \rightarrow 0)$
	10	LUTKW $(0 \rightarrow 1)$
	11	LUTWW $(1 \rightarrow 1)$

DDX[1:0]	Data {NEW}	LUT
10	0	LUTKW $(1 \rightarrow 0)$
10	1	LUTWK (0 → 1)
	0	LUTWK $(1 \rightarrow 0)$
11	1	LUTKW (0 → 1)

CDI[3:0]: VCOM and data interval

CDI[3:0]	VCOM and Data Interva
0000	17 hsync
0001	16
0010	15
0011	14
0100	13
0101	12
0110	11
0111	10 (Default)

CDI[3:0]	VCOM and Data Interva
1000	9
1001	8
1010	7
1011	6
1100	5
1101	4
1110	3
1111	2


(27) LOW POWER DETECTION (LPD) (R51H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Detect Low Bower	0	0	0	1	0	1	0	0	0	1	5
Detect Low Power	1	1		1	-	-	-	-	÷.	LPD	01

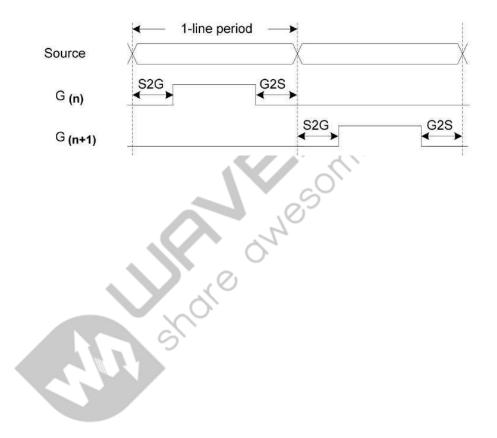
This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal Low Power Detection Flag

0: Low power input (VDD<2.5V, selected by LVD_SEL[1:0] in command LVSEL) 1: Normal status (default)

(28) TCON SETTING (TCON) (R60H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Gate/Source Non-overlap	0	0	0	1	1	0	0	0	0	0	6
Period	0	1		S20	a[3:0]			G25	[3:0]		2


This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

Period				
4				
8				
12 (Default)				
16				
20				
24				
28				
32				

S2G[3:0] or G2S[3:0]	Period
1000 b	36
1001	40
1010	44
1011	48
1100	52
1101	56
1110	60
1111	64

Period Unit = 650 nS.

(29) RESOLUTION SETTING (TRES) (R61H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
	0	0	0	0 1 1 0 0					0	1	1
Oat Diaplay Decelution	0	1		HRES[7:3]					0	0	1
Set Display Resolution	0	1	-		-	-	-	-	-	VRES[8]	ī
	0	1	VRES[7:0]								٦

This command defines alternative resolution and this setting is of higher priority than the RES[1:0] in R00H (PSR).

HRES[7:3]: Horizontal Display Resolution

VRES[8:0]: Vertical Display Resolution

Active channel calculation, assuming HRES[7:3]=0, VRES[8:0]=0:

Gate: First active gate = G0; Last active gate = VRES[8:0] - 1 Source: First active source = S0; Last active source = HRES[7:3]*8 - 1

Example: 128 (source) x 272 (gate), assuming HRES[7:3]=0, VRES[8:0]=0

Gate:	First active gate Last active gate	= G0, = G271;	(VRES[8:0] = 272, 272 - 1= 271)
Source	: First active source Last active source	= S0, = S127;	(HRES[7:3]=16, 16*8 – 1 = 127)

(30) GATE/SOURCE START SETTING (GSST) (R65H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	0	0	1	0	1	65
Cat Cata/Cause Start	0	1		HST[7:3]					0	0	00
Set Gate/Source Start	0	1	77	1.5	-	1. 1				VST[8]	0
	0	1			-7.0	VST	[7:0]				0

This command defines resolution start gate/source position.

HST[7:3]: Horizontal Display Start Position (Source)

VST[8:0]: Vertical Display Start Position (Gate)

Examp	ble : For 128(Source) HST[7:3] = 4 VST[8:0] = 32	x 240(Gate)	(HST[8:0] = 4*8 = 32),
Gate:	First active gate	= G32	(VST[8:0] = 32),
	Last active gate	= G271	(VST[8:0] = 32, VRES[8:0] = 240, 32+240-1=271)
Source	e: First active source	= S32	(HST[7:3] = 32),
	Last active source	= S159	(HST[7:3] = 32, HRES[8:0] = 128, 32+128-1=159)

(31) REVISION (REV) (R70H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	0	0	0	1	1	1	0	0	0	0	7	
	1	1	RESERVED									
Ohin Davisian	1	1	CHIP REV[7:0]								(
Chip Revision	1	1				LUT_R	EV[7:0]				F	
	1	1	LUT_REV[15:8]									
	1	1	LUT_REV[23:16]									

The LUT_REV is read from OTP address = 0x0017~0x0019 / 0x1017~0x1019.

CHIP_REV[7:0]: Chip Revision, fixed at 0x09h.

(32) GET STATUS (FLG) (R71H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	1	1	0	0	0	1
Read Flags	1	1		PTL_ flag	I ² C_ERR	I ² C_ BUSYN	data_ flag	PON	POF	BUSY_N

This command reads the IC status.

PTL_FLAG Partial display status (high: partial mode)

I²C_ERR: I²C master error status

I²C_BUSYN: I²C master busy status (low active)

data_flag: Driver has already received all the one frame data

PON: Power ON status

POF: Power OFF status

BUSY_N: Driver busy status (low active)

(33) CYCLIC REDUNDANCY CHECK (CRC) (R72H)

Action	R/W	A0	D7	D6	D5	D4	D3	D2	D1	D0
a (a) a a	R	0	0	1	1	1	0	0	1	0
Cyclic redundancy check	Y R 1 CRC_MSB[7:0]									
CHECK	R	1	CRC_LSB[7:0]							

This command reads Cyclic redundancy check(CRC) result.

The calculation only includes 0x0000~0x1FEF OTP data..

Polynomial = $x^{16} + x^{12} + x^5 + 1$, initial vaulte: 16'hFFFF

The result will be reset after this command.

CRC	_MSB[7:0]:	Most significant bits of CRC result
-----	------------	-------------------------------------

CRC_LSB[7:0]: Most significant bits of CRC result

(34) AUTO MEASURE VCOM (AMV) (R80H)

	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0			
Automatical	lly measure VCOM	0	0	1	0	0	0	0	0	0	0			
	and the same states of the	0	1	-		AMV	T[1:0]	XON	AMVS	AMV	AMVE			
	nd reads the IC stat													
AMVT[1:0]:	Auto Measure VC	COM Ti	ne											
	00b: 3s 10b: 8s				01b: 11b:	5s (defau 10s	lt)							
(ON:	All Gate ON of Al	МV												
	0: Gate normally 1: All Gate ON du					M period.	(default)							
AMVS:	Source output of	AMV												
	0: Source output 1: Source output						lefault)							
AMV:	Analog signal 0: Get VCOM value with the VV command (R81h) (default)													
	0: Get VCOM val 1: Get VCOM val						converter))						
AMVE:	Auto Measure VC	COM Er	able (/I	Disable)										
	0: No effect (def 1: Trigger auto V		ensing.	õ		NO.	one	3	>`					

(35) VCOM VALUE (VV) (R81H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Automatically measure VCOM	0	0	1	0	0	0	0	0	0	1
	1	1	-	-		-76	VV	6:0]		

This command gets the VCOM value.

VV[6:0]: VCOM Value Output

VV [6:0]	VCOM Voltage (V)	VV [6:0]	VCOM Voltage (V)	VV [6:0]	VCOM Voltage (V)
000000b	-0.1	0101011b	-4.4	1010110b	-8.7
0000001b	-0.2	0101100b	-4.5	1010111b	-8.8
0000010b	-0.3	0101101b	-4.6	1011000b	-8.9
0000011b	-0.4	0101110b	-4.7	1011001b	-9
0000100b	-0.5	0101111b	-4.8	1011010b	-9.1
0000101b	-0.6	0110000b	-4.9	1011011b	-9.2
0000110b	-0.7	0110001b	-5	1011100b	-9.3
0000111b	-0.8	0110010b	-5.1	1011101b	-9.4
0001000b	-0.9	0110011b	-5.2	1011110b	-9.5
0001001b	-1	0110100b	-5.3	1011111b	-9.6
0001010b	-1.1	0110101b	-5.4	1100000b	-9.7
0001011b	-1.2	0110110b	-5.5	1100001b	-9.8
0001100b	-1.3	0110111b	-5.6	1100010b	-9.9
0001101b	-1.4	0111000b	-5.7	1100011b	-10
0001110b	-1.5	0111001b	-5.8	1100100b	-10.1
0001111b	-1.6	0111010b	-5.9	1100101b	-10.2
0010000b	-1.7	0111011b	-6	1100110b	-10.3
0010001b	-1.8	0111100b	-6.1	1100111b	-10.4
0010010b	-1.9	0111101b	-6.2	1101000b	-10.5
0010011b	-2	0111110b	-6.3	1101001b	-10.6
0010100b	-2.1	0111111b	-6.4	1101010b	-10.7
0010101b	-2.2	1000000b	-6.5	1101011b	-10.8
0010110b	-2.3	1000001b	-6.6	1101100b	-10.9
0010111b	-2.4	1000010b	-6.7	1101101b	-11
0011000b	-2.5	1000011b	-6.8	1101110b	-11.1
0011001b	-2.6	1000100b	-6.9	1101111b	-11.2
0011010b	-2.7	1000101b	-7	1110000b	-11.3
0011011b	-2.8	1000110b	-7.1	1110001b	-11.4
0011100b	-2.9	1000111b	-7.2	1110010b	-11.5
0011101b	-3	1001000b	-7.3	1110011b	-11.6
0011110b	-3.1	1001001b	-7.4	1110100b	-11.7
0011111b	-3.2	1001010b	-7.5	1110101b	-11.8
010000b	-3.3	1001011b	-7.6	1110110b	-11.9
0100001b	-3.4	1001100b	-7.7	1110111b	-12
0100010b	-3.5	1001101b	-7.8	1111000b	-12.1
0100011b	-3.6	1001110b	-7.9	1111001b	-12.2
0100100b	-3.7	1001111b	-8	1111010b	-12.3
0100101b	-3.8	1010000b	-8.1	1111011b	-12.4
0100110b	-3.9	1010001b	-8.2	1111100b	-12.5
0100111b	-4	1010010b	-8.3	1111101b	-12.6
0101000b	-4.1	1010011b	-8.4	1111110b	-12.7
0101001b	-4.2	1010100b	-8.5		
0101010b	-4.3	1010101b	-8.6		

(36) VCOM_DC SETTING (VDCS) (R82H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Set VCOM DC	0	0	1	0	0	0	0	0	1	0
Set VCOM_DC	0	1	-	-			VDC	S[6:0]		

This command sets VCOM_DC value

VDCS[6:0]: VCOM_DC Setting

VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V
000000b	-0.1	0101011b	-4.4	1010110b	-8.7
0000001b	-0.2	0101100b	-4.5	1010111b	-8.8
0000010b	-0.3	0101101b	-4.6	1011000b	-8.9
0000011b	-0.4	0101110b	-4.7	1011001b	-9
0000100b	-0.5	0101111b	-4.8	1011010b	-9.1
0000101b	-0.6	0110000b	-4.9	1011011b	-9.2
0000110b	-0.7	0110001b	-5	1011100b	-9.3
0000111b	-0.8	0110010b	-5.1	1011101b	-9.4
0001000b	-0.9	0110011b	-5.2	1011110b	-9.5
0001001b	-1	0110100b	-5.3	1011111b	-9.6
0001010b	-1.1	0110101b	-5.4	1100000b	-9.7
0001011b	-1.2	0110110b	-5.5	1100001b	-9.8
0001100b	-1.3	0110111b	-5.6	1100010b	-9.9
0001101b	-1.4	0111000b	-5.7	1100011b	-10
0001110b	-1.5	0111001b	-5.8	1100100b	-10.1
0001111b	-1.6	0111010b	-5.9	1100101b	-10.2
0010000b	-1.7	0111011b	-6	1100110b	-10.3
0010001b	-1.8	0111100b	-6.1	1100111b	-10.4
0010010b	-1.9	0111101b	-6.2	1101000b	-10.5
0010011b	-2	0111110b	-6.3	1101001b	-10.6
0010100b	-2.1	0111111b	-6.4	1101010b	-10.7
0010101b	-2.2	100000b	-6.5	1101011b	-10.8
0010110b	-2.3	1000001b	-6.6	1101100b	-10.9
0010111b	-2.4	1000010b	-6.7	1101101b	-11
0011000b	-2.5	1000011b	-6.8	1101110b	-11.1
0011001b	-2.6	1000100b	-6.9	1101111b	-11.2
0011010b	-2.7	1000101b	-7	1110000b	-11.3
0011011b	-2.8	1000110b	-7.1	1110001b	-11.4
0011100b	-2.9	1000111b	-7.2	1110010b	-11.5
0011101b	-3	1001000b	-7.3	1110011b	-11.6
0011110b	-3.1	1001001b	-7.4	1110100b	-11.7
0011111b	-3.2	1001010b	-7.5	1110101b	-11.8
010000b	-3.3	1001011b	-7.6	1110110b	-11.9
0100001b	-3.4	1001100b	-7.7	1110111b	-12
0100010b	-3.5	1001101b	-7.8	1111000b	-12.1
0100011b	-3.6	1001110b	-7.9	1111001b	-12.2
0100100b	-3.7	1001111b	-8	1111010b	-12.3
0100101b	-3.8	1010000b	-8.1	1111011b	-12.4
0100110b	-3.9	1010001b	-8.2	1111100b	-12.5
0100111b	-4	1010010b	-8.3	1111101b	-12.6
0101000b	-4.1	1010011b	-8.4	1111110b	-12.7
0101001b	-4.2	1010100b	-8.5		
0101010b	-4.3	1010101b	-8.6		

(37) PARTIAL WINDOW (PTL) (R90H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	1	0	0	0	0	0	1	0	
	0	1			HRST[7:3]	0	0	0			
Set Partial Window	0	1		1	1						
	0	1		-	VRST[8]						
	0	1	VRST[7:0]								
	0	1		-	-	20	-		-	VRED[8]	
	0	1				VREI	D[7:0]			1400 - 240 B	
	0	1	-			1	-	12	•	PT SCAN	

This command sets partial window.

HRST[7:3]:	Horizontal start channel bank. (value 00h~1Dh)
HRED[7:3]:	Horizontal end channel bank. (value 00h~1Dh). HRED must be greater than HRST.
VRST[8:0]:	Vertical start line. (value 000h~1DFh)
VRED[8:0]:	Vertical end line. (value 000h~1DFh). VRED must be greater than VRST.
PT_SCAN:	0: Gates scan only inside of the partial window. 1: Gates scan both inside and outside of the partial window. (default)

(38) PARTIAL IN (PTIN) (R91H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Partial In	0	0	1	0	0	1	0	0	0	1

This command makes the display enter partial mode.

(39) PARTIAL OUT (PTOUT) (R92H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Partial Out	0	0	1	0	0	1	0	0	1	0

This command makes the display exit partial mode and enter normal mode.

(40) PROGRAM MODE (PGM) (RA0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Enter Program Mode	0	0	1	0	1	0	0	0	0	0

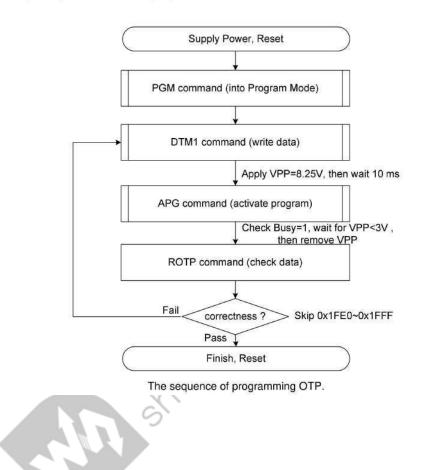
After this command is issued, the chip would enter the program mode.

After the programming procedure completed, a hardware reset is necessary for leaving program mode.

(41) ACTIVE PROGRAM (APG) (RA1H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Active Program OTP	0	0	1	0	1	0	0	0	0	1

After this command is transmitted, the programming state machine would be activated.


The BUSY_N flag would fall to 0 until the programming is completed.

(42) READ OTP DATA (ROTP) (RA2H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0				
	0	0	1	0	1	0	0	0	1	0	ŀ			
Read OTP data for check	1	1		Dummy										
	1	1	The data of address 0x000 in the OTP											
	1	1			The data	of addres	s 0x001 in	the OTP			ŀ			
	1	1					:]			
	1	1			The dat	a of addres	ss (n-1) in	the OTP]			
	1	1			The da	ta of addre	ess (n) in th	ne OTP			1			

The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, the max address = 0xFFF.

(43) OTP PROGRAMMING ADDRESS (PGAR) (RA3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	1	0	1	0	0	0	1	1	
	0	1	-	-			ST	ADDR[1	2:8]		
OTP Programming Address	0	1			10	ST_ADDR[7:0] END_ADDR[12:8]					
	0	1		-	1						
	0	1			÷.	END A	DDR[7:0]	121	78		

The command is set OTP programming memory start address and end address.

ST_ADDR [12:0]: OTP programming start address.

END_ADDR [12:0]: OTP programming end address.

Example:

For Bank0 0x0000 (start address) ~ 0x0FFF (end address), 4K bytes.

ST_ADDR [12:8] = 0x00

ST ADDR [7:0] = 0x00

END_ADDR [12:8] = 0x0F

END_ADDR [7:0] = 0xFF

For Bank1 0x1000 (start address) ~ 0x1FFF (end address), 4K bytes.

ST_ADDR [12:8] = 0x10

ST_ADDR [7:0] = 0x00

shore owesome END_ADDR [12:8] = 0x1F

END_ADDR [7:0] = 0xFF

(44) CASCADE SETTING (CCSET) (RE0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Sat Casada Ontian	0	0	1	1	1	0	0	0	0	0
Set Cascade Option	0	1	-	-	-	-	-	-	TSFIX	CCEN

This command is used for cascade.

TSFIX:

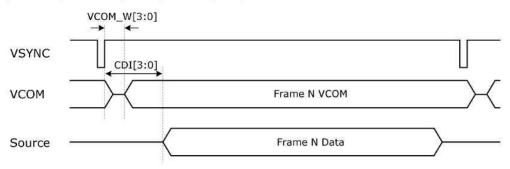
CCEN: Output clock enable/disable.

0: Output 0V at CL pin. (default)

1: Output clock at CL pin for slave chip.

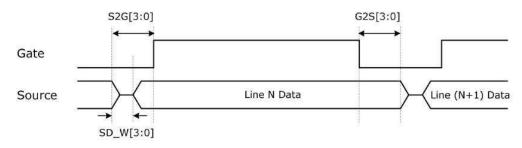
Let the value of slave's temperature is same as the master's.

0: Temperature value is defined by internal temperature sensor / external LM75. (default)


1: Temperature value is defined by TS_SET[7:0] registers.

(45) POWER SAVING (PWS) (RE3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power Saving for VCOM &	0	0	1	1	1	0	0	0	1	1	E3ł
Source	0	1		VCOM	_W[3:0]			SD_V	N[3:0]		00h


This command is set for saving power during refreshing period. If the output voltage of VCOM / Source is from negative to positive or from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two parameters.

VCOM_W[3:0]: VCOM power saving width (unit = line period)

SD_W[3:0]:

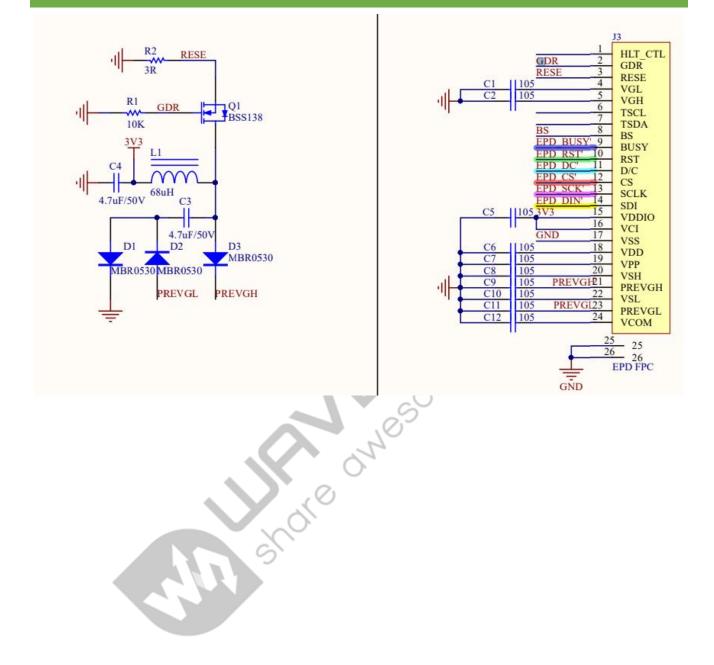
Source power saving width (unit = 650nS)

(46) LVD VOLTAGE SELECT (LVSEL) (RE4H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Select LVD Voltage	0	0	1	1	1	0	0	1	0	0
	0	1	-	-		-	-	-	LVD S	SEL[1:0]

LVD_SEL[1:0]: Low Power Voltage selection

LVD_SEL[1:0]	LVD value
00	< 2.2 V
01	< 2.3 V
10	< 2.4 V
11	< 2.5 V (default)


(47) FORCE TEMPERATURE (TSSET) (RE5H)

rce Temperature Value for 0 0 1 1 1 1 0 0 1 0 1 Cascade 0 1 0 1 TS_SET[7:0]
Cascade 0 1 TS_SET[7:0]
command is used for cascade to fix the temperature value of master and slave chip.

3.52inch e-Paper (B) User Manual

11. REFERENCE CIRCUIT

12. ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
VDD	Logic supply voltage	-0.5 to +6.0	V	-	-	
TOPR	Operation temperature range	0 to 40	°C	45 to70	%	Note 12-1
Tttg	Transportation temperature range	-25 to 60	°C	45 to70	%	Note 12-2
Tstg	Storage condition	0 to 40	°C	45 to70	%	Maximum storage time: 5 years
-	After opening the package	0 to 40	°C	45 to70	%	

Note 12-1: We guarantee the single pixel display quality for 0-35℃, but we only guarantee the barcode readable for 35-40℃. Normal use is recommended to refresh every 24 hours.

Note 12-2: Tttg is the transportation condition, the transport time is within 10 days for -25°C~0°C or 40° C~60°C.

Note 12-3: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months. We suggest that the full black and full white picture could be added to clear the screen after the module is refreshed for a long time, the display effect would be better.

13. DC CHARACTERISTICS

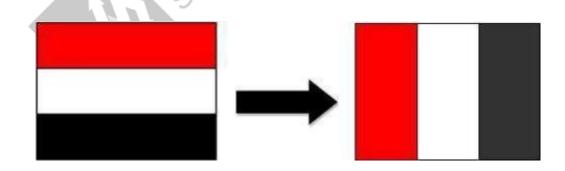
The following specifications apply for: VSS=0V, VCI=3.3V, TOPR=25 $^\circ\!\mathrm{C}$.

Table 12-1: DC Characteristics

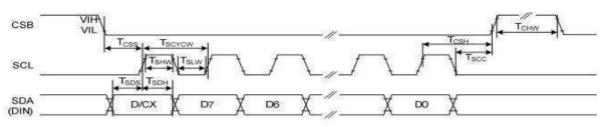
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VDD	VDD operation voltage	-	2.5	3.3	3.6	V
VIH	High level input voltage	-	0.8VDDIO	-	VDDIO	V
VIL	Low level input voltage	-	0	-	0.2VDDIO	V
VOH	High level output voltage	IOH = 400uA	0.8VDDIO	-	-	V
VOL	Low level output voltage	IOL = -400uA	0	-	0.2VDDIO	V
lupdate	Module operating current	-	-	5	-	mA
Isleep	Deep sleep mode	VCI=3.3V	-	-	3	uA

The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern.

(Note 13-1)


- The listed electrical/optical characteristics are only guaranteed under the controller &waveform

provided by SID.


- Vcom value will be OTP before in factory or present on the label sticker.

Note 13-1

The Typical power consumption

14. AC CHARACTERISTICS

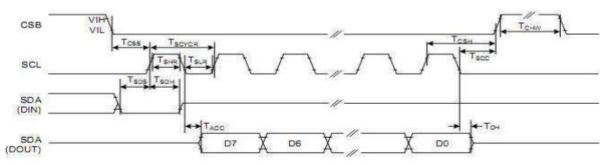


Figure: 3-wire Serial Interface Characteristics (Read mode) 1

 \sim

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
Toss		Chip select setup time	60			ns
TCSH	000	Chip select hold time	65			ns
Tscc	CSB	Chip select setup time	20		3 J	ns
Тсни		Chip select setup time	40			ns
Tscycw		Serial clock cycle (Write)	100			ns
TSHW		SCL "H" pulse width (Write)	35			ns
Tsw	~~	SCL "L" pulse width (Write)	35			ns
TSCYCR	SCL	Serial clock cycle (Read)	350			ns
TSHR		SCL "H" pulse width (Read)	175			ns
TSLR		SCL "L" pulse width (Read)	175			ns
Tsos	SDA	Data setup time	30		1	ns
TSOH	(DIN)	Data hold time	30		l	ns
TACC	SDA	Access time			350	ns
Тон	(DOUT)	Output disable time	15			ns

3.52inch e-Paper (B) User Manual

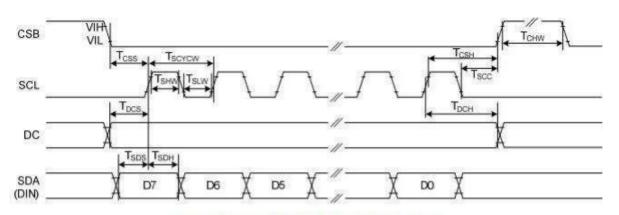


Figure: 4-wire Serial Interface Characteristics (Write mode)

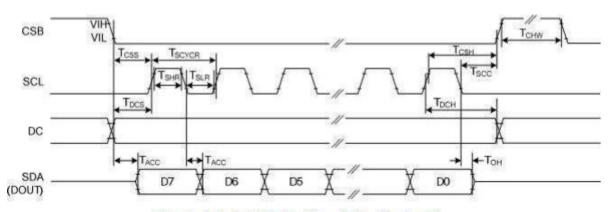


Figure: 4-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
TCSS		Chip select setup time	60			ns
TCSH	000	Chip select hold time	65			ns
Tacc	CSB	Chip select setup time	20			ns
Тони		Chip select setup time	40			ns
Tscycw		Serial clock cycle (Write)	100			ns
Тани		SCL "H" pulse width (Write)	35			ns
TsLW	SCL	SCL "L" pulse width (Write)	35			ns
TSCYCR	SUL	Serial clock cycle (Read)	350			ns
TSHR		SCL "H" pulse width (Read)	175			ns
TSLR		SCL "L" pulse width (Read)	175			ns
Toos	00	DC setup time	30			ns
Тосн	DC	DC hold time	30			ns
Tsos	SDA	Data setup time	30			ns
Тарн	(DIN)	Data hold time	30			ns
TACC	SDA	Access time			350	ns
Тон	(DOUT)	Output disable time	15	1		ns

15. POWER CONSUMPTION

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25 ℃	-	150	mAs	-
Deep sleep mode	-	25 ℃	-	3	uA	-

MAS=update average current × update time

shore owesome hordwore

16. OPTICAL CHARACTERISTICS

16.1 SPECIFICATION

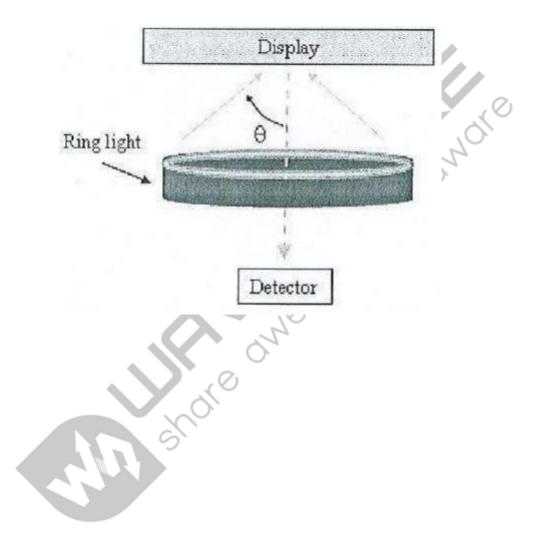
Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25℃, VDD=3.3V

de.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 16-1
Gn	2Grey Level	-	-	KS+(WS-KS)×n(m-1)	-	L *	-
CR	Contrast Ratio	-	10	15	-		-
	Black State L* value		-	13	14		Note 16-1
KS	Black State a* value		-	3	4		Note 16-1
WS	White State L* value		63	65	-		Note 16-1
50	Red State L* value	Red	25	28	-		Note 16-1
RS	Red State a* value	Red	36	40	-		Note 16-1
		Storage and		Update the white			
Denel	Image Update	transportation	-	screen	-		-
Panel	Update Time	Operation	-	Suggest Updated once a day	-		-

WS : White state, KS : Black state, RS: Red State

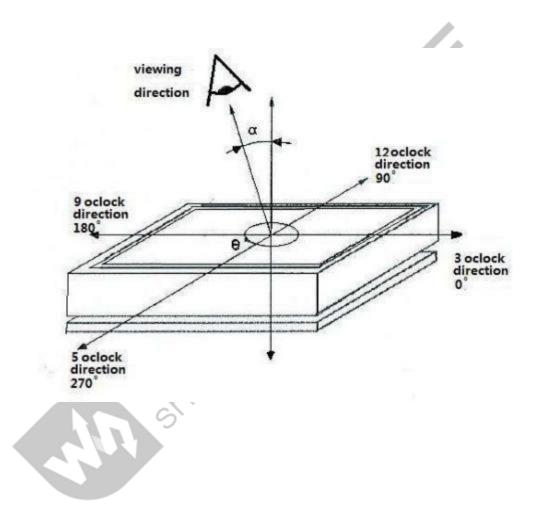

Note 16-1 : Luminance meter : i - One Pro Spectrophotometer

16.2 DEFINITION OF CONTRAST RATIO

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area(Rd)() :

R1: white reflectance Rd: dark reflectance

CR = R1/Rd



16.3 REFLECTION RATIO

The reflection ratio is expressed as:

R = Reflectance Factor whiteboard x (L center / L white board)

 L_{center} is the luminance measured at center in a white area (R=G =B= 1). $L_{white board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angles hall be no more than 2 degrees.

17. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Somecosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status							
Product specification	This data sheet contains final product specifications.						
Limiting values							
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.							
Application information							
Where application information specification.	is given, it is advisory and does not form part of the						
Product Environmental Certification							
ROHS							
REMARK							

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

18. RELIABILITY TEST

18.1 RELIABILITY TEST ITEM

NO	Test items	Test condition	Remarks
1	High-Temperature Operation	T=40℃,RH=35%RH, For 240Hr	
2	Low-Temperature Operation	T = 0°Cfor 240 hrs	
3	High-Temperature Storage	T=50℃ RH=35%RH For 240Hr	Test in white pattern
4	Low-Temperature Storage	T = -25℃ for 240 hrs Test in white pattern	Test in white pattern
5	High Temperature High Humidity Operation	T=40℃, RH=90%RH, For 168Hr	
6	High Temperature High Humidity Storage	T=50℃,RH=80%RH For 240Hr	Test in white pattern
7	Temperature Cycle	-25℃(30min)~60℃(30min)50 Cycle	Test in white pattern
8	Package Vibration	1.04G,Frequency:20 200Hz Direction: X,Y,Z Duration: 30 minutes in each direction	Full packed for shipment
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence:1 corner, 3 edges, 6 face One drop for each.	Full packed for shipment
10	UV Exposure Resistance	765W/ m² for 168hrs, 40 °C	
11	Electrostatic Discharge	Machine model: +/-250V,0Ω ,200pF	

Actual EMC level to be measured on customer application.

Note1: Stay white pattern for storage and non-operation test.

Note 2: Operation is black/white/red pattern, hold time is 150S.

Note 3: The function, appearance should meet the requirements of the test before and after the test. Note4: Keep testing after 2 hours placing at 20° C- 25° C

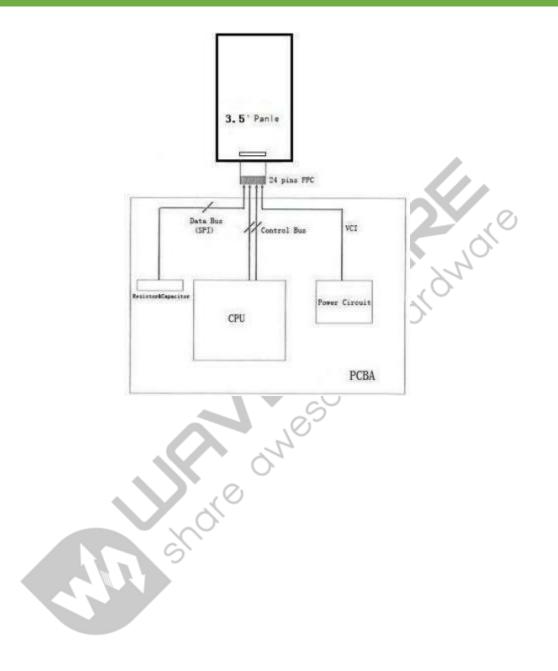
18.2 PRODUCT LIFE TIME

The EPD Module is designed for a 5-year life-time with 25°C/60%RH operation assumption.

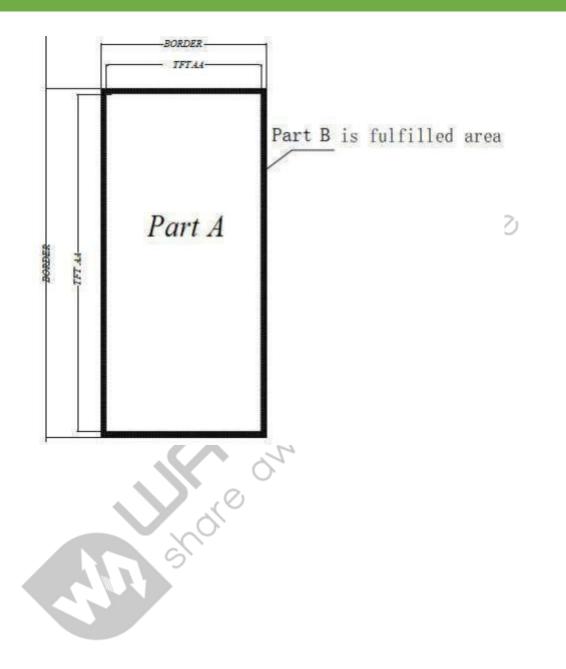
Reliability estimation testing with accelerated life-time theory would be demonstrated to provide confidence of EPD lifetime.

18.3 PRODUCT WARRANTY

Warranty conditions have to be negotiated between SIDi and individual customers.


SID provides 12+1 (one month delivery time) months warranty for all products which are purchased from SID.

shore awesome


3.52inch e-Paper (B) User Manual

19. BLOCK DIAGRAM

20. PART A/PART B SPECIFICATION

21. POINT AND LINE STANDARD

Shipme	ent Inspection Standard, Eq	uipment: Elect	trical test fixtur	e, Point ga	uge		
Outline dimension	54.41(H)x84.70(V)x0.91(D)	Unit: mm	Part-A	Active area	Part-B	Border area	
	Temperature	Humidity	Illuminance	Distance	Time	Angle	
Environment	19℃~25℃	55%±5%RH	800~ 1300Lux	300mm	35Sec		
Defet type	Inspection method	Standard		Part-A		Part-B	
Spot	Electric Display	D≪0.25mm		Ignore		Ignore	
		0.25mm <d≤0.4mm< td=""><td colspan="2">N≪4</td><td>Ignore</td></d≤0.4mm<>		N≪4		Ignore	
		D>0.4mm		Not Allow		Ignore	
Display unwork	Electric Display	Not Allow		Not Allow		Ignore	
Display error	Electric Display	Not Allow		Not Allow		Ignore	
		L≪2mm, W≪0.2mm		Igno	Ignore		
Scratch or line defect(include dirt)	Visual/Film card	2.0mm <l≪5.0mm 0.2<w≪0.3mm< td=""><td colspan="2">N≪2</td><td>Ignore</td></w≪0.3mm<></l≪5.0mm 		N≪2		Ignore	
		L>5mm, W>0.3mm		Not Allow		Ignore	
PS Bubble	Visual/Film card	D≤0.2mm		Ignore		Ignore	
		0.2mm≪D≪0.35mm&N≪4		N≤4		Ignore	
		D>0.35 mm		Not Allow		Ignore	
		X≪6mm, Y≪0.4mm, Do not affect the electrode circuit (Edge chipping)					
	Visual/Film card	X \leqslant 1mm, Y \leqslant 1mm, Do not affect the electrode circuit					
		((Corner chipping) Ignore					
Side Fragment		x S X					
	1. Appearance defect should not cause electrical defects;						
Remark	2. Appearance defects should not cause dimensional accuracy problems						
	L=long, W=wide D=point size N=Defects NO						