

5.79inch e-Paper User Manual

Revision History

Version	Content	Date	Page
1.0	New creation	2024/3/1	All
	Shore on second		

Contents

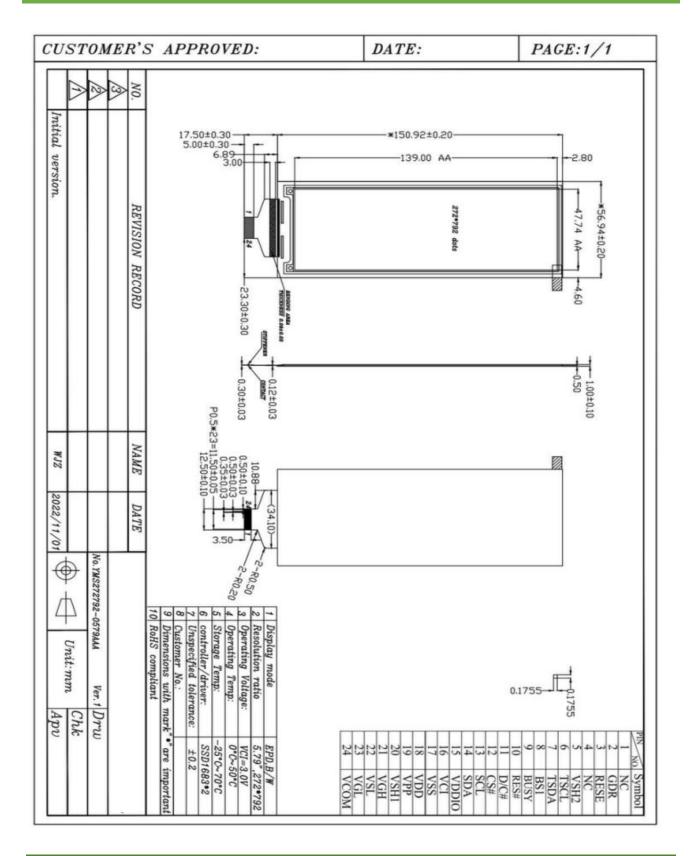
1. OVERVIEW	
2. FEATURES	2
3. MECHANICAL SPECIFICATION	3
4. MECHANICAL DRAWING OF EPD MODULE	4
5. INPUT/OUTPUT PIN ASSIGNMENT	5
6. ELECTRICAL CHARACTERISTICS	7
6.1 Absolute Maximum Rating	7
6.2 DC Characteristics	8
6.3 AC Characteristics	9
6.3.1 MCU Interface Selection	9
6.3.2 MCU Serial Interface (4-wire SPI)	9
6.3.3 MCU Serial Peripheral Interface (3-wire SPI)	10
6.4.4 Interface Timing	12
7. COMMAND TABLE	
8. OPTICAL SPECIFICATIONS	
9. HANDLING, SAFETY, AND ENVIRONMENT REQUIREMENTS	
10. RELIABILITY TEST	
11. REFERENCE CIRCUIT	
12. TYPICAL OPERATING SEQUENCE	31
12.1 Normal Operation Flow	
12.2 Normal Operation Reference Program	32
13. INSPECTION METHOD AND CONDITION	
13.1 Inspection Condition	33
13.2 Zone Definition	33
13.3 General Inspection Standards for Products	34
13.3.1 Appearance Inspection Standard	34
14. PACKAGING	37

1. OVERVIEW

5.79 inch e-Paper is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 5.79 inch active area contains 272×792 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. FEATURES

- ♦ 272×792 pixels display
- ♦ High contrast High reflectance
- ♦ Ultra wide viewing angle Ultra low power consumption
- ♦ Pure reflective mode
- ♦ Bi-stable display
- ♦ Commercial temperature range
- ♦ Landscape portrait modes
- ♦ Hard-coat antiglare display surface
- ♦ Ultra Low current deep sleep mode
- ♦ On-chip display RAM
- ♦ Waveform can stored in On-chip OTP or written by MCU
- ♦ Serial peripheral interface available
- ♦ On-chip oscillator
- ♦ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ♦ I²C signal master interface to read external temperature sensor
- ♦ Support partial update mode
- ♦ Built-in temperature sensor



3. MECHANICAL SPECIFICATION

Parameter	Specification	Unit	Remark
Screen Size	5.79	Inch	
Display Resolution	272(H) x 792(V)	Pixel	DPI:144
Active Area	47.74 x 139.00	mm	
Pixel Pitch	0.1755 x 0.1755	mm	
Pixel Configuration	Rectangle		
Outline Dimension	56.94 (H) × 150.92(V) × 1.0(D)	mm	
Weight	16.3±0.5	g	
	Shorie and shories	<i>3</i> ²	

4. MECHANICAL DRAWING OF EPD MODULE

5. INPUT/OUTPUT PIN ASSIGNMENT

NO.	Name	I/O	Description	Remark
1	NC		Do not connect with other NPC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
			I2C Interface to digital temperature sensor Clock pin	
6	TSCL	0	External pull up resistor is required when connecting to I2C	
	TOOL		slave.	
			When not in use: VSS	
			I2C Interface to digital temperature sensor Data pin	
7	TSDA	I/O	External pull up resistor is required when connecting to I2C	
'	TODA	1,0	slave.	
			When not in use: VSS	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input, Active Low	Note 5-3
11	D/C#	I	Data/Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power supply for interface logic pins.	
10	VDDIO	ı	It should be connected with VCI.	
16	VCI	Р	Power supply for the chip	
17	VSS	Р	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from	
10	VDD		VCI. A capacitor should be connected between VDD and VSS.	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM	
			and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C =Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU

communication only when CS# is pulled LOW.

- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode.

 When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform-Communicating with digital temperature sensor.

Note 5-5: Bus interface selection pin.

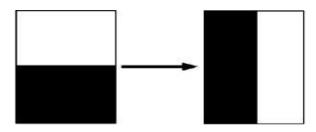
BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. ELECTRICAL CHARACTERISTICS

6.1 ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	°C
Storage Temp range	TSTG	-25 to+70	°C
Optimal Storage Temp	TSTGo	23±3	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.



6.2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	V _{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8V _{CI}	-	-	V
Low level input voltage	V _{IL}	-	-	-	-	0.2V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA	-	0.9V _{CI}	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	-	0.1V _{CI}	V
Typical power	P _{TYP}	V _{CI} =3.0V	-	-	18.96	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V	-	-	0.006	-	mW
Typical operating current	lopr_V _{CI}	V _{CI} =3.0V	-	-	6.32	-	mA
Image update time	-	25 °C	-	-	4	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off, No clock No input load Ram data retain	-	-	25	-	uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off, No clock No input load Ram data not retain	-	-	2	3	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical.

2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical characteristics are only guaranteed under the controller & waveform provided by Waveshare.

6.3 AC CHARACTERISTICS

6.3.1 MCU INTERFACE SELECTION

The IC can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

	Pin Name					
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Notes: L is connected to VSS and H is connected to VDDIO.

6.3.2 MCU SERIAL INTERFACE (4-WIRE SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2.

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Notes: 1. L is connected to VSS and H is connected to VDDIO.

2. † stands for rising edge of signal.

3. DA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

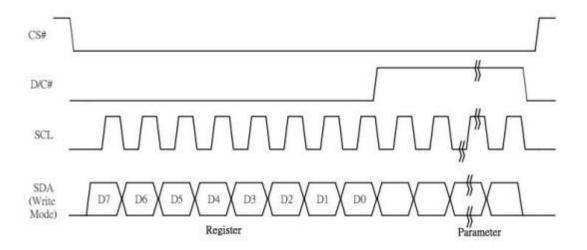


Figure 6-1: Write procedure in 4-wire SPI mode

6.3.3 MCU SERIAL PERIPHERAL INTERFACE (3-WIRE SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI.

Table 6-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Notes: 1. L is connected to VSS and H is connected to VDDIO.

2. † stands for rising edge of signal.

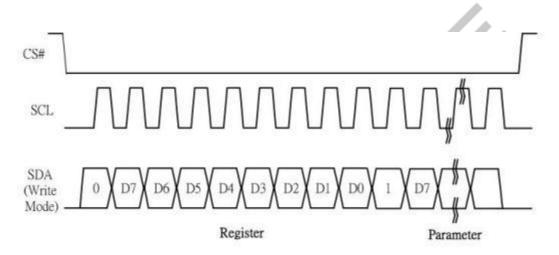
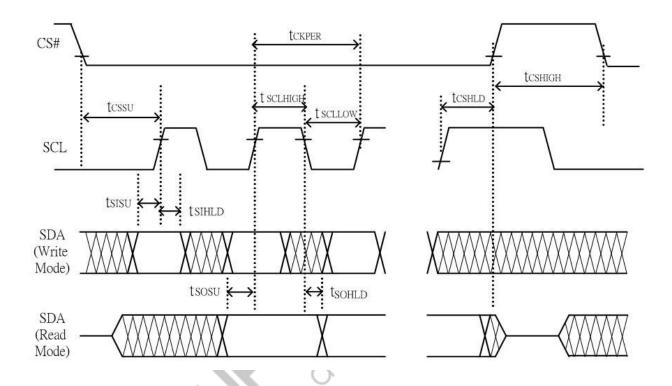



Figure 6-3: Write procedure in 3-wire SPI

6.4.4 INTERFACE TIMING

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)	17-1	()=)	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	TBD	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD	-	196	ns
tscllow	Part of the clock period where SCL has to remain low	TBD	-	(14)	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	TBD	-	10 5 0	ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	TBD	1.75	1073	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD	8	- 8	ns
tcshigh	Time CS# has to remain high between two transfers	TBD	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	TBD	-	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	TBD	TBD	-	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	TBD	TBD	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. COMMAND TABLE

om /w#	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	(8)	UI	100	330		1000	15	1000		- 3	Driver Output control], 300 MU	X
	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				ting as (A	
0	1		0	0	0	0	0	0	0	A ₈				5751 10 1	-
0	1		0	0	0	0	0	B ₂	B ₁	Bo		B [2:0] = 0			
												Gate scar	nning seq	uence and	direction
												B[2]: GD			
												Selects th		out Gate	
												GD=0 [PC			
														output cha G0,G1, G	
												GD=1,	querioe is	40,41,4	z, ao,
												G1 is the		utput cha	
												output sec	quence is	G1, G0, C	33, G2,
												B[1]: SM			
													canning c	rder of ga	te driver.
												SM=0 [PC	DR],		
														99 (left an	d right ga
												interlaced SM=1,)		
													64G29	4, G1, G3	G29
												B[0]: TB	ODI	f 00	- 0000
														from G0 G299 to G	
		4.													
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate	driving vo	ltago	
0	1	US	0	0	0	8	0.000		A ₁	Ao	Control	A[4:0] = 0			
U	1		U	U	U	A ₄	Аз	A ₂	A ₁	A ₀				0V to 20V	
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h 08h	12 12.5	12h 13h	17.5 18
												07h	12.5	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5		

Com	man	d Tal	ble		NV.				2	<i>11</i>	10	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Control	A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo		B [7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		Remark: VSH1>=VSH2

B[7] = 1, VSH2 voltage setting from 2.4V to 8.6V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AEh	5.6
8Fh	2.5	AFh	5.7
90h	2.6	B0h	5.8
91h	2.7	B1h	5.9
92h	2.8	B2h	6
93h	2.9	B3h	6.1
94h	3	B4h	6.2
95h	3.1	B5h	6.3
96h	3.2	B6h	6.4
97h	3.3	B7h	6.5
98h	3.4	B8h	6.6
99h	3.5	B9h	6.7
9Ah	3.6	BAh	6.8
9Bh	3.7	BBh	6.9
9Ch	3.8	BCh	7
9Dh	3.9	BDh	7.1
9Eh	4	BEh	7.2
9Fh	4.1	BFh	7.3
A0h	4.2	C0h	7.4
A1h	4.3	C1h	7.5
A2h	4.4	C2h	7.6
A3h	4.5	C3h	7.7
A4h	4.6	C4h	7.8
A5h	4.7	C5h	7.9
A6h	4.8	C6h	8
A7h	4.9	C7h	8.1
A8h	5	C8h	8.2
A9h	5.1	C9h	8.3
AAh	5.2	CAh	8.4
ABh	5.3	CBh	8.5
ACh	5.4	CCh	8.6
			+

ADh

5.5

Other

NA

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 8.8V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
21h	8.8	37h	13
23h	9	38h	13.2
24h	9.2	39h	13.4
25h	9.4	3Ah	13.6
26h	9.6	3Bh	13.8
27h	9.8	3Ch	14
28h	10	3Dh	14.2
29h	10.2	3Eh	14.4
2Ah	10.4	3Fh	14.6
2Bh	10.6	40h	14.8
2Ch	10.8	41h	15
2Dh	11	42h	15.2
2Eh	11.2	43h	15.4
2Fh	11.4	44h	15.6
30h	11.6	45h	15.8
31h	11.8	46h	16
32h	12	47h	16.2
33h	12.2	48h	16.4
34h	12.4	49h	16.6
35h	12.6	4Ah	16.8
36h	12.8	4Bh	17
	'	Other	NA

C[7] = 0,

VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	08	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN=1.
			5 %			<u> </u>				2		Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1	Write Register for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Code Setting	Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		•
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting

**	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
1/ VV #	D/0#	TIEX	U	Do	Do	D 4	Do	UZ	DI	Do	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phas
0	1	00	1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	for soft start current and duration setting.
	1	<i>-</i>			-	- 2.		1010	1300	-		A[7:0] -> Soft start setting for Phase1
0	277.0		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		= 8Bh [POR]
0	1		0	O 0	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] -> Soft start setting for Phase2 = 9Ch [POR] C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR] Bit Description of each byte:
												A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR [Time unit]
												0000 ~ NA
												0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3 1010 7.3
												1010 7.5
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1
												Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description

0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description
	1000			1000	200				A2 858	(1 (50° A 100°)		00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	44	0	0	0	1	0	0	0	1	Data Entry made setting	Define data entry acquence
0	1	11	0	0	0	0	0	0 A ₂	0 A ₁	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X increment, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

	man		Transcent				-		-		0	Description
2000	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A 5	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A2	Aı	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	10	0	0	0	- 340	4	0	0	0	T	Taman anakana Canasa Calaskian
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure
0	1		A ₇	A 6	A 5	A ₄	A ₃	A ₂	A ₁	A ₀	Control	sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write to temperature register)	A[7:0] = 7Fh [POR]
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
	U	יטו	U	U	U	1	1	U	-	1		read from temperature register.
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	Control (Read from	

com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	Serisor)	C[7:0] = 00H [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor
0	0	20	0	0	1	0	0	0	0	0	Master Activation	starts. BUSY pad will output high during operation. Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel
0	0	21	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Display Update Control	RAM content option for Display Update A[7:0] = 00h [POR]
	2		NA-SERIO	35-266	V		200	50000	2000		-	B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

Com	man	d Ta	ble	.c. %						8		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	23	0	1	0	0	A ₃	A ₂	A ₁	A ₀	V COW CENSE DURANUIT	sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

Com	man	d Ta	ble													
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	tion			
0	0	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register	Write VC	SECTION AND ADDRESS.	er from M	ICU interface	
												A[7:0]	0] VCOM A[7:0] VCOM			
												08h	-0.2	44h	-1.7	
												0Ch	-0.3	48h	-1.8	
												10h	-0.4	4Ch	-1.9	
												14h	-0.5	50h	-2	
												18h	-0.6	54h	-2.1	
												1Ch	-0.7	58h	-2.2	
												20h	-0.8	5Ch	-2.3	
												24h	-0.9	60h	-2.4	
												28h	-1	64h	-2.5	
												2Ch	-1.1	68h	-2.6	
												30h	-1.2	6Ch	-2.7	
												34h	-1.3	70h	-2.8	
												38h	-1.4	74h	-2.9	
												3Ch	-1.5	78h	-3	
												40h	-1.6	Other	NA	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1	2D	0 A7 B7 C7 D7 E7 F7 G7 H7 J7 K7	0 A6 B6 C6 D6 E6 F6 G6 H6 J6 K6	1 A ₅ B ₅ C ₅ D ₅ E ₅ G ₅ H ₅ I ₅ K ₅	0 A ₄ B ₄ C ₄ D ₄ E ₄ G ₄ H ₄ I ₄ J ₄	1 A ₃ B ₃ C ₃ D ₃ E ₃ G ₃ H ₃ I ₃ K ₃	1 A2 B2 C2 D2 E2 F2 G2 H2 J2 K2	0 A ₁ B ₁ C ₁ D ₁ E ₁ F ₁ G ₁ H ₁ J ₁ K ₁	1 A ₀ B ₀ C ₀ D ₀ E ₀ F ₀ G ₀ I ₀ J ₀	OTP Register Read for Display Option	Read Register for Display Option: A[7:0]: VCOM OTP Selection (Command 0x37, Byte A) B[7:0]: VCOM Register (Command 0x2C) C[7:0]~G[7:0]: Display Mode (Command 0x37, Byte B to Byte F) [5 bytes] H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes]				
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte Use	r ID store	ed in OTP:	
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]]~	J[7:0]: Use		Byte A and	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Byte J)	[10 bytes]			
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co						
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀						
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo						
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo						
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀						
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho						
1	1		l ₇	I 6	I ₅	14	l ₃	l ₂	l ₁	lo						
			_					-	-							
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo						

	man		ble								ř	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1 A5	0 A ₄	0	0	1 A ₁	1 Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
							13				55)	
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	A ₀		[227 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FI
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		and XON[nXY]
0	1		1	18	- 1		3			1		Refer to Session 6.7 WAVEFORM
0	1				•	•	0.00		1943			SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1683 application note. BUSY pad will output high during operation.
0	0	25	0	0	1	1	0	1	0	1	CRC Status Pood	CRC Status Poad
0	57/1.	35	0	0	1	1	88703	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A 8		- Long to the control of the control
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		1

	man						-	100		200	I	Iz II II W
R/W#	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Communa	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
0	0	37	0	0	4	4	0	4	4	-	Write Desister for Display	Write Desistanten Display Ontice
0	1	3/	A ₇	0	0	0	0	0	0	0	Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1	<i>a</i>	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		0: Default [POR]
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	-	B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		D[7:0] Display Mode for WS[23:16] 0: Display Mode 1
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		F[6]: Ping-Pong for Display Mode 2
0	1		I ₇	l 6	15	I 4	l ₃	12	l ₁	I ₀		0: RAM Ping-Pong disable [POR]
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform
												version.
												Remarks:
												1) A[7:0]~J[7:0] can be stored in OTP
												2) RAM Ping-Pong function is not suppo for Display Mode 1
		l						22				Tot Display Mode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-	OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1	55	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀	-	
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-	
0	1		17	I ₆	I ₅	 4	l ₃	l ₂	I ₁	lo		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		
				arealto a	73% - V	marks.	concitons.			SS	Į.	
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY

Com	man	d Ta	ble											
	D/C#	Zerosto de Ser	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control			
0	1		A ₇	A ₆	A ₅	A ₄	0	0	A ₁	Ao		A[7:0] = C0h	[POR], set VBD as HIZ.	
													ect VBD option	
												A[7:6]	Select VBD as	
												00	GS Transition,	
													Defined in A[2] and A[1:0]	
												01	Fix Level,	
													Defined in A[5:4]	
												10	VCOM	
												11[POR]	HiZ	
												A [E 4] E: 1	10 11 1 1/00	
													evel Setting for VBD	
												A[5:4]	VBD level	
												00	VSS	
												01	VSH1	
												10	VSL	
												11	VSH2	
												Δ [1·0] QQ T	ransition setting for VBD	
												VBD Level S		
													; 01b: VSH1;	
												10b: VSL; 11	, UID. VSH1,	
												A[1:0]	VBD Transition	
												00	LUT0	
												01	LUT1	
												10	LUT2	
		L.,										11	LUT3	
0	0	3F	0	0	1	1	1	1	1	4	End Option (EOPT)	Option for LU	IT and	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Set this byte		
	118		fish to	7.0	710		7.0	112	3 110					
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM C	Option	
0	1		0	0	0	0	0	0	0	A ₀		A[0] = 0 [POF	Rj	
	(5:		U	0		U	0	J	U	/ 10		0 : Read RA	M corresponding to RAM0x24	
												1 : Read RA	M corresponding to RAM0x26	
	, .						70							
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the s	start/end positions of the	
0	1	131	0	0	A ₅		A ₃	A ₂	A ₁	An	Start / End position	window addr	ess in the X direction by an	
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address unit		
	o.		9	3	J 5	5 4	D ₃	J 2	וכ	50		ALE OF MOST	F-01 VOt+ DOD - 001	
													5:0], XStart, POR = 00h 5:0], XEnd, POR = 31h	
					L		10		- 8	L		DIO.OJ. ALAI	o.oj, ALIIu, TOIT=OIII	
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the s	start/end positions of the	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window addr	ess in the Y direction by an	
0	1		0	0	0	0	0	0	0	A ₈		address unit	tor HAM	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		A[8:0]: YSA[8:0], YStart, POR = 000h	
0	1		0	0	0	0	0	0	0	B ₈			8:0], YEnd, POR = 12Bh	
	•	46	0	1	•						T			
0							\cap	-			Auto Mito DED DAME.	M for Auto Write RED RAM for Regular Pa		
0	0	40	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	0 A ₀	Auto Write RED RAM for Regular Pattern	Auto Write R A[7:0] = 00h		

om	DIO	Mari		DC	DE	D4	DO	DO	D4	DO	Command	Descripti	- m		
W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	10100000		V 397
												A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	0
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	300
												010	64	111	NA
												A[2:0]: Ste Step of all to Source	ep Width, ter RAM ir	POR= 000 X-direction) on accordi
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	256
												010	32	110	400
												011	64	111	NA
												BUSY pac operation.		ut high du	ring
2	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	DAM DAI	A for Dog	ular Dattar
		47				-	- 222	222	7,543	- 33		Auto Write		vi ioi negi	ulai Fallei
)	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0 A[7]: The	1st step v		
)	1		A 7	A 6	A ₅	A ₄	0	A ₂	A ₁	Ao	negular Fallern		1st step variety	POR= 00	0
	1		A 7	A 6	A ₅	A4	0	A ₂	A ₁	Ao	negular Fallern	A[7]: The A[6:4]: Ste Step of all	1st step variety	POR= 00	0
	1		A ₇	A ₆	A ₅	A4	0	A ₂	A ₁	Ao	negular Fallern	A[7]: The A[6:4]: Ste Step of all to Gate	1st step v ep Height, ter RAM ir	POR= 00 Y-direction	0 on accordi
	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	negular Fallern	A[7]: The A[6:4]: Ste Step of all to Gate A[6:4]	1st step von Height, ter RAM in Height	POR= 00 Y-direction A[6:4]	0 on accordi Height
	1		A ₇	A ₆	A ₅	A ₄	0	A2	Aı	Ao	negular Fallern	A[7]: The A[6:4]: Step of all to Gate A[6:4] 000 001	1st step von ep Height, ter RAM in Height 8	POR= 00 Y-direction A[6:4] 100 101	0 on according Height 128 256
)	1		A 7	A ₆	A5	A4	0	A ₂	Aı	Ao	negular Fallern	A[7]: The A[6:4]: Ste Step of all to Gate A[6:4]	1st step von the step step step step step step step ste	POR= 00 Y-direction A[6:4]	0 on accord Height 128
0	1		A7	A ₆	As	A4	0	A2	Aı	Ao	negular Fallern	A[7]: The A[6:4]: Ste Step of all to Gate A[6:4] 000 001 010	1st step viep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir	POR= 000 Y-direction A[6:4] 100 101 110 111	0 on according Height 128 256 300 NA
)	1		A7	A ₆	As	A4	0	A2	Aı	Ao	negular Fallern	A[7]: The A[6:4]: Step of ali to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of ali to Source A[2:0] 000 001 010	1st step viep Height, ter RAM in Height 8 16 32 64 Exp Width, ter RAM in Width 8 16 32	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction 100 101 110 110	0 on according to the second s
	1		A7	A ₆	As	A4	0	A2	Aı	Ao	negular Fallern	A[7]: The A[6:4]: Step of ali to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of ali to Source A[2:0] 000 001 010	1st step viep Height, ter RAM in Height 8 16 32 64 ep Width, ter RAM in Width 8 16 32 64	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction 100 101 110 111	0 on according to the second s
	1		A7	A6	As	A4	0	A2	Aı	Ao	negular Fallern	A[7]: The A[6:4]: Step of ali to Gate A[6:4] 000 001 010 011 A[2:0]: Step of ali to Source A[2:0] 000 001 010 011 During op	1st step viep Height, ter RAM in Height 8 16 32 64 ep Width, ter RAM in Width 8 16 32 64	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction 100 101 110 111	0 on according to the second s
	0	4E	A7	A6	As	A4	0	A ₂	A ₁	Ao	Set RAM X address	A[7]: The A[6:4]: Step of ali to Gate A[6:4] 000 001 010 011 A[2:0]: Step of ali to Source A[2:0] 000 001 010 011 During op	1st step von per Height, ter RAM in Height 8 16 32 64 er RAM in Width 8 16 32 64 er RAM in RA	POR= 000 Y-direction 100 101 110 111 POR= 000 X-direction 101 110 110 110	On according the second

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
												A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y address
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	counter	in the address counter (AC)
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000h [POR].
	1/2	2									ns.	4
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.
											OWESO	Ne hordwork

8. OPTICAL SPECIFICATIONS

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2 Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		4		sec	
Life		Topr		1000000times or 5years		(0)	

Note 8- 1: Luminance meter: Eye-One Pro Spectrophotometer.

Note 8-2: CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

Note 8-3: WS: White state, DS: Dark state.

specification.

9. HANDLING, SAFETY, AND ENVIRONMENT REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

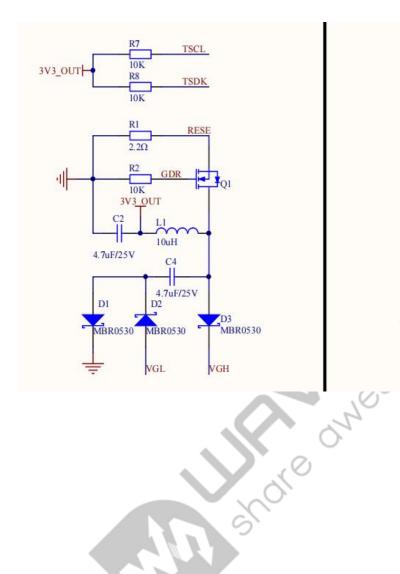
CAUTION

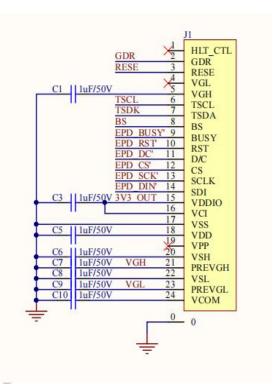
The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

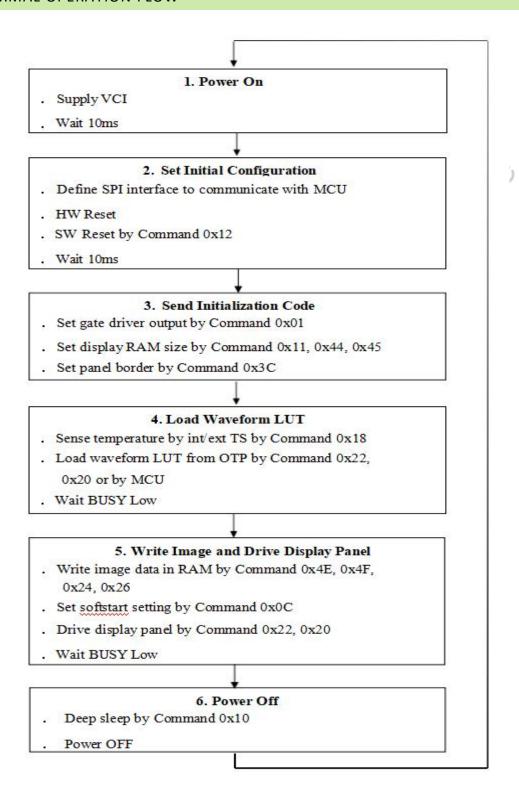
Data sheet status										
Product specification This data sheet contains final product specifications.										
Limiting values										
Limiting values given are in ac	cordance with the Absolute Maximum Rating System (IEC									
134).										
Stress above one or more of	the limiting values may cause permanent damage to the									
device. These are stress rating	s only and operation of the device at these or at any other									
conditions above those given	in the Characteristics sections of the specification is not									
implied. Exposure to limiting values for extended periods may affect device reliability.										
Application information										
Where application information	is given, it is advisory and does not form part of the									


10. RELIABILITY TEST


NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=+60°C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=+40°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High Temperature High Humidity Operation	T=40°C , RH=80%, 240h
6	High Temperature High Humidity Storage	T=50°C , RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle: [-25°C 30min]→ [+60 °C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs, 40 °C Test in white pattern
9	ESD Gun	Air+/-15KV; Contact +/-8KV (Test finished product shell, not display only) Air+/-8KV; Contact +/-6KV (Naked EPD display, not including IC and FPC area) Air+/-4KV; Contact +/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

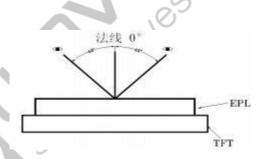
11. REFERENCE CIRCUIT



12. TYPICAL OPERATING SEQUENCE

12.1 NORMAL OPERATION FLOW

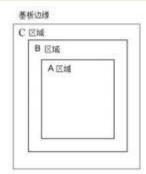
12.2 NORMAL OPERATION REFERENCE PROGRAM


ACTION	VALUE/DATA	COMMENT
	POWER ON	
delay	10ms	
PIN CONFIG	•	
RESE#	low	Hardware reset
delay	200us	
RESE#	high	
delay	200us	
Read busy pin		Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data 0x0F 0x01 0x0E	Set display size and driver output control
Command 0x21	Data 0x00 0x10	Clock select for Cascade mode
Command 0x0C	Data 0x8B 0x9C 0xA6 0x0F	Set Soft start control
Command 0x3C	Data 0x01	Set border
	SET VOLTAGE AND L	OAD LUT
Command 0x2C	Data 0x70	Set VCOM value
Command 0x03	Data 0x17	Gate voltage setting
Command 0x04	Data 0x41 0x00 0x32	Source voltage setting
Command 0x32	Write 224bytes LUT	Load LUT
	LOAD IMAGE AND I	UPDATE
Command 0x11	Data 0x05	Master Chip:Date entry mode setting
Command 0x44	Data 0x00 0x31	Master Chip:Set BW Ram X address
Command 0x45	Data 0x0F 0x01 0x00 0x00	Master Chip:Set BW Ram Y address
Command 0x4E	Data 0x00	Master Chip:Set Ram X address counter
Command 0x4F	Data 0x0F 0x01	Master Chip:Set Ram Y address counter
Command 0x24	13600bytes	Master Chip:Load image(BW)
Command 0x4E	Data 0x00	Master Chip:Set Ram X address counter
Command 0x4F	Data 0x0F 0x01	Master Chip:Set Ram Y address counter
Command 0x26	13600bytes	Master Chip:Load image(R)
Command 0x91	Data 0x04	Slave Chip:Date entry mode setting
Command 0xC4	Data 0x31 0x00	Slave Chip:Set BW Ram X address
Command 0xC5	Data 0x0F 0x01 0x00 0x00	Slave Chip:Set BW Ram Y address
Command 0xCE	Data 0x31	Slave Chip:Set Ram X address counter
Command 0xCF	Data 0x0F 0x01	Slave Chip:Set Ram Y address counter
Command 0xA4	13600bytes	Slave Chip:Load image(BW)
Command 0xCE	Data 0x31	Slave Chip:Set Ram X address counter
Command 0xCF	Data 0x0F 0x01	Slave Chip:Set Ram Y address counter
Command 0xA6	13600bytes	Slave Chip:Load image(R)
Command 0x22	Data 0XC7	Image update
Command 0x20		
Read busy pin	•	
Command 0x10	Data 0X01	Enter deep sleep mode
Commune OATO	POWER OFF	

13. INSPECTION METHOD AND CONDITION

13.1 INSPECTION CONDITION

Item	Condition
Illuminance	800~1500LUX
Temperature	22°C±3°C
Humidity	55±10%RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection Method	By eyes



13.2 ZONE DEFINITION

A Zone: Active area

B Zone: Border zone

C Zone: From B zone edge to panel edge

13.3 GENERAL INSPECTION STANDARDS FOR PRODUCTS

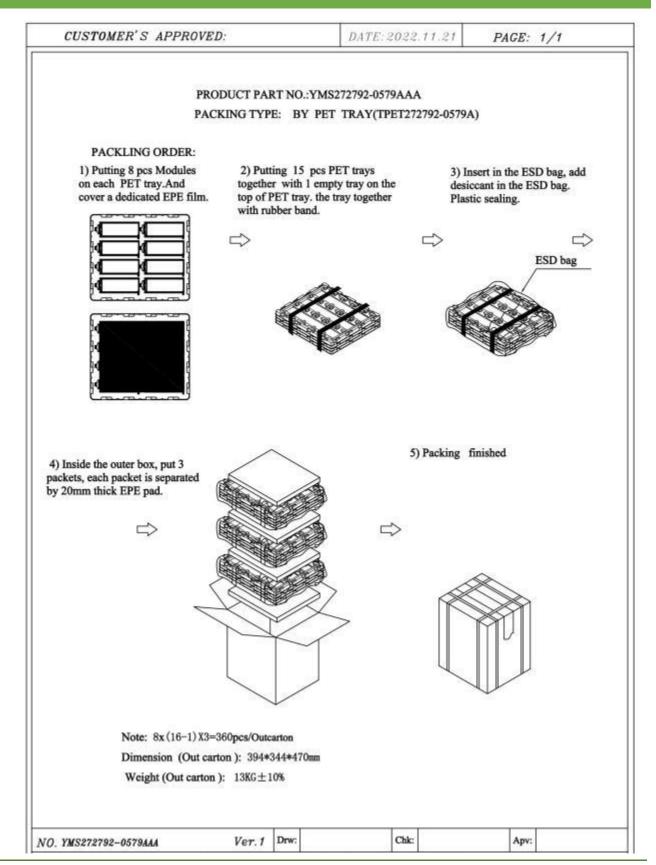
13.3.1 APPEARANCE INSPECTION STANDARD

Inspec	tion item	Fi	gure	A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	The distance between the two spots should not be less than 10mm	7.5"-13.3"Module (Not include 7.5"): D>1mm N=0 0.5 <d≤0.8 (not="" 0.8<d≤1="" 4.2"):="" 4.2"-7.5"module="" d="" d≤0.5="" ignore="" include="" n≤2="" n≤4="">0.5 N=0 0.4<d≤0.5 0.25<d≤0.4="" 4.2":="" below="" d="" d≤0.25="" ignore="" module="" n≤2="" n≤4="">0.5 N=0 0.4<d≤0.5 0.1mm<d≤0.25="" 0.25<d≤0.4="" cm²<="" d≤0.25="" ignore="" n≤1="" n≤3="" n≤4="" td=""><td>Foreign matter D≤1mm Pass</td><td>Check by eyes Film gauge</td><td>MIN</td></d≤0.5></d≤0.5></d≤0.8>	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Insp	ection item	F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	tion item	Figure	Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel		Check by eyes. Film gauge	MIN
	Crack	玻璃裂纹	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN
	Burr edge	† _ II,	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		1. Waterproof film damage, wrinkled, open edge, not allowed 2. Exceeding the edge of module(according to the lamination drawing) Not allowed 3. Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed	Check by eyes	MIN
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布区 封边般边缘 PS边缘 Border外缘(PPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN


Inspecti	ion item	Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
FPC defect	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

	on item	Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective	Protective	Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
film defect	film	Adhesive at edge L≤5mm, W≤0.5mm, N=2, no entering into viewing area		Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99	% alcohol, allowed	Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the documer film can be pulled off.	nt requirements, and ensure that the protective	Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely co	overing the IC.	Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and Left and right can be less than 0.5mm from F		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the warequirements of the technical documents.	ork sheet. The attaching position meets the	Check by eyes	MIN
			owesome		

14. PACKAGING

