API library (Secondary Development Library) User Manual

API library (Secondary Development Library)

User Manual

Version: V1.3

Update Date: 2022.08.08

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Revision History

Version Date Description
V1.0 2022.01.12 First Edition
V1.1 2022.03.23 Newly added library function (chapter 3.16~3.20)
V1.2 2022.04.03 Improve filtering Configuration; Add APIs(chapter 3.21~3.25)
V1.3 2022.08.08 Improve Functionality, Compatible with CANtest/CANPro;

Add Chapter 6

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Contents

API Library (Secondary Development LIDIAIY)coccccieieirieiirieuirietieieiesierisieseeetesaesessesesesessesessesessesesesessesensesenes 1
T OVEIVIEW ..veentieiietie et et stt e it et eeeteeeteesteesteetaeesbeassa e seesseesseeasseasseessaesseessesasseasseasseanseensaeasseassessseensaenseesssenssenss 5
2 Data Sructure DEfINTtONecuieeiiiiieie ettt see ettt ettt e et eeteesbe e baeesbessbessseesseesseesseesseesseesseenseesnsennes 5
2.1 ZCAN DEVICE INFO.....cciiiiiiiitiiiiieieieitete ettt ettt ste st stetese et eseeteasesteseseeeeseesessesaesseneeneans 5

2.2 ZCAN_CHANNEL INIT _CONFIG.....ccoeotiiiiitiitiieieietiett st sie ettt ettt ste et ese e esessesesseneeneenes 6

2.3 CAN_fTAIME .eovieiie ettt ettt ettt ettt et et e et e et e esaeeste e seessbeesseesseessaesseessaeessessseaseeseensaeansensseeseensaens 9

2.4 CANTA fTAIMNE ..eoueieiiieiieceie ettt ettt st sttt ettt e e e ate et e bt e ae e nbeenteenteeenes 10

2.5 ZCAN _TransSmit DAta........ccceiovierieiiiiiiiieiiieseesieesteetesteesteesaeessseessessseesseesseesssesssessseesseesseesnsennns 10

2.6 ZCAN_TransSmitFD Data........ccoooiiiiiiiiiieiiiiieciesie ettt ettt e b et esaaessaesbeensean 11

2.7 ZCAN RECEIVE DALA......eievieiiieiiieiiieieeteecttesteeste et eve e steesteestaeesaeesseesseesseesssesssessseesseesseesssesssenssenns 11

2.8 ZCAN ReECEIVEFD DAtoocuiiiiiiiiiiiiieiieiteciieeite ettt ettt sttt bt enb e saesseesaneenseen 12

2.9 TPTOPEILY ettt et et ettt et ettt e bt e e ettt e bt e e sbe e e bt e ebae e nbeeeane 12

RN o (0 B T o) a1 0) 5 (02 F OO USRS 13
3.1 ZCAN _OPCNDEVICE.eevieeiiieiiieiiieeite sttt ettt sttt s bttt et e s ttestte s bt enbeenbeesatesseessseenseenseasssesasesnnean 13

3.2 ZICAN CLOSEDEVICEeevieiieeeiieiieetiesttesteeeteeeteeeseesteesteessseasseseseesseessaesssessseasseeseesseesssesssenssessseessenns 13

3.3 ZCAN _GetDEVICEINTeiiiiiiiietieieet ettt ettt ettt ettt et e et e sate e bt e beenbeesntesnneens 14

3.4 ZCAN ISDEVICEOMNLINEvievieiiesiieiiiieteeteesteeeteestveeteeteesteesteesteeessessseesseesseesseesssesssessseesseessesnssenns 14

3.5 ZCAN TNIECAN Lottt ettt sttt b e bt b st et et beeb e st e sbe e et ebeeaeeben 14

3.6 ZCAN _SHATTCAN ..ottt ettt sttt ettt et et e e te s e s te s estenteseeseesesteseneeseeneesessenseaseneeneeneanens 15

3.7 ZCAN RESCECAN ..ottt ettt sttt bbbt ettt st eb e sb et e st et ebesbesbe 15

3.8 ZCAN CIeArBUITETviiiiieiiieciiiciieeteet ettt ettt ettt e st eeebeesseensaessaessaeenseenseenseas 16

3.9 ZCAN _TTANSINL .eeutiitiieiiieiieeiieeitestte et et e et e sttestteeabeesbeeateesstesseesabeenseenseesseesseesnseenseensaesssesssesnseensean 16

3.10 ZCAN _TransSmitFDcoouiiiiiiiieiieeiee ettt ettt et ettt e st e st e s bt b e ns e eseesnneennean 16

3.11 ZCAN_GEtRECEIVEINUITL....cutiiuiiiiieiie ettt ettt ettt ettt te st e s bt et e s e s aeesaeesnbeenseenseesssesseesnseensean 17

312 ZICAN RECEIVE....eietietieiiiettete ettt ettt stt ettt et et et e st e e sttt eabeeabeesstesatessaesaseenseensaesseesnnesnsean 17

313 ZCAN RECEIVEFD ..ottt ettt sttt ettt et sb st 18
314 GEIPTOPETLY ittt ettt ettt ettt ettt e be e e s bt e e bttt e bt e e nbbee s bt e enbbeeebneeane 18

315 ReICASCIPTOPEILY ...couvietieiiieiit ettt ettt ettt ettt et e st esaee et e et e et esaeesseeeaseenseensaesseennneennean 19

3.16 ZCAN_SetADItBAUA.cueiiieiiiiite ittt ettt 19

3.17 ZCAN_SetDDitBaud.....c.ooveieiiiiiiiiiiieee ettt ettt 20

3.18 ZCAN_SetBaudRatCCUSIOMeeuvieiiieiieiiieiie ettt ettt et ettt et e st e sateseaeesbeesbeesteesnsesntesnseenseens 20

3.19 ZCAN_SetCANFDStANAArd.cceeoveiiiriiitiitiieieeeet ettt sttt enea 21

3.20 ZCAN_SetResiStanceENabIeooiiiiiiiieiieciecee ettt 21

3.21 ZCAN _CIEATFIIET ...ttt ettt ettt ettt ettt ettt et eestesate e bt ebeesneesntesnneanseens 21

3.22 ZCAN_SEtFIEETIMOMEeeeiieiiieiiieieeeiece ettt ettt ettt e sttt et e saaessaeeabeenseenseesanas 22

3.23 ZCAN_SetFilterStartIDcc.coiiirieiiieiiieri ettt ettt ettt sttt ebe bt e 22
3.24 ZCAN_SetFilterENdIDooueiiiiiiiiiiiiieiee ettt sttt 23

3.25 ZICAN ACKFIIET ...ttt ettt sttt sttt ebe bt aenea 24

A ATITDULE LISt ..eoiiiitiiiiitii ettt ettt ettt et bt e b et ebeebee s bt bt eet et e bt et et ennenne b e n e 25
5. FLOW OF USINEZ AP ...ttt ettt ettt et e sat e e st e s et e beesbeesetesntesnseenbaenseesnnenns 27
51 FIOW ottt h bbbt h e bt bt bttt n bt eb e bt st aeneas 27

5.2 SAMPIE COUC...coutiiiiieiiieiieeieete ettt ettt ettt et et e sttt e bt et e et e st e e sseeeabeenbeensteeseeeseeeabeenbeenseenanas 29

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

6. Compatible with ZLG ControlCAN.dIl API Library Manual...........ccceceveieiiiinieniienienie et 36
6.1 Data Structure DEfINItIONuviiiiiiii ittt e e e e et e e e e e e e e e e ssataabeeeeeeeesesinaes 36
6.2 APT TIIUSITALE ...ttt e e ettt e e e e e e e e et et et e e e e e s es e aaaaaeeeeeeessesnssaataaeeeeeeessans 40

6.3 Flow of Using API

h
h
h
h
mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

1 Overview

If users only use USBCANFD devices for CAN/CANFD bus debugging,you can directly use the provided
CANFD Tool software to test data transmission and reception.
If users plan to write software programs for their own products. Please carefully read the following

instructions and refer to the demo we provided.

Development Library Files:Control CANFD.lib, Control CANFD.dlII

VC Platform Function Declaration File:Control CANFD.h,config.h

Notel: ControlCANFD.lib, ControlCANFD.dIl Relying on the VC2008 runtime, which is typically included
in most systems but not in very few lean systems, it needs to be installed.
Note2: The secondary development interface functions and data structures supported by this device are

compatible with ZLG's interface and data structures.

2 Data Structure Definition

2.1 ZCAN_DEVICE_INFO

This structure contains some basic information about the device, which can be filled in the function

ZCAN_GetDevicelnf.

typedef struct tagZCAN DEVICE INFO
USHORT hw Version;
USHORT fw Version;
USHORT dr Version;
USHORT in Version;
USHORT irg Num;
BYTE can Num;
UCHAR str Serial Num[Z20];
UCHAR str hw Type[40];
USHORT reserved[4];

} ZCAN DEVICE INFO;

Member

hw_Version

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Hardware version number, in hexadecimal. For example, 0x0100 represents V1.00.
fw_Version

Firmware version number, hexadecimal.

dr_Version

Driver version number, hexadecimal.

in_Version

Interface library version number, hexadecimal.

irq_ Num

The interrupt number used by the board.

can_Num

Indicates how many channels there are.

str_Serial Num

The serial number of this board, such as "USBCANFDO0002" (note: including the string terminator "\0").
str_hw_Type

hardware type.

reserved

Reserved only, not set.

2.2 ZCAN_CHANNEL_INIT CONFIG

This structure defines the parameters for channel initialization configuration and initialize the structure before

call ZCAN_InitCAN.

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

typedef struct tagZCAN CHANNEL INIT CONFIG {
UINT can type; //type:TYPE CAN(0) TYPE CANFD(1)
union

{

Trucct

0

UINT acc code;
UINT acc mask;
UINT reserved;
BYTE filter;
BYTE timingO;
BYTE timingl;

BYTE mode;

}can;

struct

{
UINT acc _code;
UINT acc mask;
UINT abit timing;
UINT dbit timing;
UINT brp;
BYTE filter;
BYTE mode;
USHORT pad;
UINT reserved;

}canfd;

};
}ZCAN CHANNEL INIT CONFIG;
Member
can_type

Device type,=0 represents CAN device,=1 represents CANFD device.

CAN Device
acc_code
The frame filtering acceptance code of SJA1000 matches the "relevant bits" filtered by the mask code.
After all matches are successful, this message can be received, otherwise it will not be received.
Recommended setting is 0.
acc_mask
The frame filtering mask code of SJA1000 filters the received CAN frame ID, with bits 0 being "relevant
bits" and 8 bits 1 being "irrelevant bits". It is recommended to set it to OXFFFFFFFF, that is, receive all.
reserved
Reserved only, not set.
filter

Filtering method,=1 represents single filtering,=0 represents double filtering.

7

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

timing0

Ignore, do not set.

timing1

Ignore, do not set.

mode

Working mode,=0 represents normal mode (equivalent to a normal node),=1 represents listening only
mode (only receiving, not affecting the bus).
CANFD Device

acc_code

Acceptance code, same as CAN device.

acc_mask

Shield code, same as CAN device.

abit_timing

Ignore, do not set.

dbit_timing

Ignore, do not set.

brp

Baud prescaler, set to 0.

filter

Filtering method, same as CAN device.

mode

Mode, same as CAN device.

pad

Data alignment, not set.

reserved

Reserved only, not set.

Note: The Baud (abit_timing and dbit_timing) of the device is set by GetIProperty. See Chapter 5.2 for details.

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

2.3 can_frame

This structure contains CAN message information.

typedef struct {

canid t can id; /* 32 bi

BYTE ean dlc; [* fr

BYTE __pad; > 1

BYTE _ wE80; f* B

BYTE __Eesls J* reserved
BYTE data[CAN_MAX_DLEN]f* __ a

}can_ frame;

Member

can_id

R flags */
. CAN MAX DLEN) */

The frame ID, 32 bits, and the upper 3 bits belong to the flag bits. The meaning of the flag bits is as follows:

The 31st bit (highest bit) represents the extended frame flag,=0 represents the standard frame,=1 represents the

extended frame, macro IS EFF can obtain this flag;

The 30th bit represents the remote frame flag,=0 represents the data frame,=1 represents the remote frame,

macro IS RTR can obtain this flag;

The 29th digit represents the error frame standard,=0 represents the CAN frame, and=1 represents the error

frame. Currently, it can only be set to 0;

The remaining bits represent the actual frame ID value, using the macro MAKE CAN_ID Construct ID, using

macro GET _ID Get ID.
can_dlc
data length.
__pad
Align, ignore.
__res0
Reserved only, not set.
__resl
Reserved only, not set.

data

Message data, with an effective length of can_dlc.

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

2.4 canfd frame

This structure contains CANFD message information.

typedef struct {
canid t can_id; /* 32 bit MAKE CAN ID + EFF/RTR/ERR flags */

BYTE len; /* frame payload length in byte */

BYTE flags; /* additional flags for CAN FD,i.e error code */
BYTE __res0; [/* reserved / padding */

BYTE __iresl; [* reserved / padding */

BYTE data[CANFD_MAX_DLEN]/* __attribute__((aligned(B)))*/;

}canfd frame;
Member
can_id
Frame ID, same as chapter 2.3.
len
data length.
flags
Additional flags, such as using CANFD baud rate switch, then set to macro CANFD BRS.
__res0
Reserved only, not set.
__resl
Reserved only, not set.
data
Message data, with an effective length of len.

2.5 ZCAN _Transmit Data

Contains CAN send message information , using in function ZCAN_Transmit.

typedef struct tagZCAN Transmit Data
{

can_ frame frame;
UINT transmit type;
}2CAN Transmit Data;

Member

frame

Message data information, see chapter 2.3 for details.

transmit_type

Sending type: 0=normal sending, 1=single sending, 2=spontaneous self receiving, and 3=single spontaneous
self receiving.

The description of the sending type is as follows:

Normal sending: When the ID arbitration is lost or there is an error in sending, the CAN controller will

10

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

automatically resend until the transmission is successful, or the transmission times out, or the bus is turned off.

Single sending: In some applications, automatic retransmission is meaningless when partial data loss is
allowed but transmission delay cannot occur. In these applications, data is generally sent at fixed time intervals, and
automatic resending can cause subsequent data to be unable to be sent, resulting in transmission delays. If a single
transmission is used, arbitration is lost or transmission error occurs, and the CAN controller will not resend the
message.

Spontaneous self reception: generates a normal transmission with self reception characteristics, and after the
transmission is completed, the sent message can be read from the receiving buffer.

Single spontaneous self reception: A single transmission with self reception characteristics is generated, and
retransmission will not be executed in case of transmission error or arbitration loss. After the transmission is

completed, the sent message can be read from the receive buffer.

2.6 ZCAN TransmitFD Data

Contains CANFD send message information , using in function ZCAN_TransmitFD.

typedef struct tagZCAN TransmitFD Data
{

canfd frame frame;
UINT transmit type;
}Z2CAN TransmitFD Data;

Member
frame
Message data information, see chapter 2.4 for details.
transmit_type

Sending type, same as chapter 2.5.

2.7 ZCAN_Receive Data

Contains CAN recv message information , used in function ZCAN_Receive.

typedef struct tagZCAN Receive Data
{

can frame frame;
UINTG4 timestamp;//us
}ZCAN Receive Data;

11

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

Member
frame
Message data information, see chapter 2.3 for details.
timestamp

Timestamp, in microseconds, based on device startup time.

2.8 ZCAN_ReceiveFD Data

Contains CANFD recv message information , used in function ZCAN ReceiveFD.
typedef struct tagZCAN ReceiveFD Data
{
canfd_ frame frame;

UINTe4 timestamp;//us
}ZCAN ReceiveFD Data;

Member
frame
Message data information, see chapter 2.4 for details.
timestamp

Timestamp, in microseconds.

2.9 [IProperty

The details of the structure are as follows, used to obtain/set device parameter information. For example code,

refer to program listing 5.2.

typedef struct tagIProperty

{
SetValueFunc SetValue;
GetValueFunc GetValue;
GetPropertysFunc GetPropertys;

}IProperty;

Member
SetValue
Set the equipment attribute values, see Chapter 4 Property list for details.

GetValue

12

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Get attribute values.
GetPropertys

Used to return all attributes contained in the device.

3 APIs Description

3.1 ZCAN_OpenDevice

This function is used to open the device. A device can only be opened once.
DEVICE HANDLE ZCAN OpenDevice (UINT device type, UINT device index, UINT reserved);
parameter

device_type

For the device type, see the macro definition in the Header file zlgcan.h.

device_index

Device index number, for example, when there is only one USBCANEFD, the index number is 0. If another
USBCANFD is inserted, the device index number inserted later will be 1, and so on.

reserved

Reserved only.
return value

INVALID DEVICE HANDLE indicates that the operation failed, otherwise it indicates that the operation
was successful. The device handle value is returned, please save the handle value. Future operations will need to

use.

3.2 ZCAN_CloseDevice

This function is used to shut down the device, and the closing and opening devices correspond one by one.

UINT ZCAN CloseDevice (DEVICE HANDLE device handle);

parameter
device_handle

The handle value of the device that needs to be closed, i.e. the value returned by ZCAN_ OpenDevice

13

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

successfully execute.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.3 ZCAN_GetDevicelnf

This function is used to obtain device information.
UINT ZCAN GetDeviceInf (DEVICE HANDLE device handle, ZCAN DEVICE INFO* pInfo);
parameter

device handle

Device handle value.

plInfo

Device information structure, see chapter 2.1 for details.
return value

STATUS_ OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.4 ZCAN IsDeviceOnLine

This function is used to detect whether the device is online.
UINT ZCAN IsDeviceOnLine (DEVICE HANDLE device handle);

parameter
device_handle
Device handle value.
return value

Device online=STATUS ONLINE, not online= STATUS _OFFLINE.

3.5 ZCAN_InitCAN

This function is used to initialize CAN.

CHANNEL HANDLE ZCAN InitCAN(DEVICE HANDLE device handle, UINT can_index, ZCAN CHANNEL INIT CONFIG* pInitConfig);

parameter

14

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

device_handle
Device handle value.
can_index
Channel index number, channel 0's index number is 0, channel 1's index number is 1, and so on.
pInitConfig
Initialization structure, see chapter 2.2 for details.
return value
INVALID CHANNEL HANDLE indicates that the operation failed, otherwise it indicates that the operation

was successful. The channel handle value is returned. Please save the handle value for future operations.

3.6 ZCAN_StartCAN

This function is used to start the CAN channel.

UINT ZCAN StartCAN(CHANNEL HANDLE channel handle);

parameter
channel_handle
Channel handle value.
return value

STATUS_OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.7 ZCAN_ResetCAN

This function is used to reset the CAN channel, which can be accessed through ZCAN_StartCAN to recovery.

UINT ZCAN ResetCAN(CHANNEL HANDLE channel handle);

parameter
channel _handle
Channel handle value.
return value

STATUS_OK indicates successful operation, STATUS ERR indicates that the operation failed.

15

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

3.8 ZCAN_ClearBuffer

This function is used to clear the library receive buffer.

UINT ZCAN ClearBuffer (CHANNEL HANDLE channel handle);

parameter
channel_handle
Channel handle value.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.9 ZCAN_Transmit

This function is used to send CAN frame.
UINT ZCAN Transmit (CHANNEL HANDLE channel handle, ZCAN Transmit Data* pTransmit, UINT len);
parameter

channel_handle

Channel handle value.

pTransmit

The first pointer of the Structure array ZCAN_Transmit Data.

len

frame number.
return value

Returns the actual number of successfully sent frames.

3.10 ZCAN_TransmitFD

This function is used to send CANFD frame.

UINT ZCAN TransmitFD(CHANNEL HANDLE channel handle, ZCAN TransmitFD Data* pTransmit, UINT len);

parameter

channel_handle

16

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Channel handle value.
pTransmit
The first pointer of the Structure array ZCAN_TransmitFD Data.
len
frame number.
return value

Returns the actual number of successfully sent frames.

3.11 ZCAN_GetReceiveNum

Obtain the number of CAN or CANFD messages in the buffer.
UINT ZCAN GetReceiveNum(CHANNEL HANDLE channel handle, BYTE type);
parameter

channel _handle

Channel handle value.

type

Get CAN or CANFD frame number, 0=CAN, 1=CANFD.
return value

Returns the frame number.

3.12 ZCAN _Receive

This function is used to receive CAN frames, it is recommended to use ZCAN_GetReceiveNum to ensures
that the buffer has data before use this function.
UINT ZCAN Receive (CHANNEL HANDLE channel handle, ZCAN Receive Data* pReceive, UINT len, int wait time DEF(-1));
parameter

channel_handle

Channel handle value.

pReceive

The first pointer of the Structure array ZCAN_Receive Data.

len
17

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Array length (maximum number of frames received this time, actual return value is less than or equal to this
value).

wait_time

There is no data in the buffer. The waiting time for function blocking is in milliseconds. If it is -1, it indicates
wait forever. The default value is -1.
return value

Returns the actual number of received frames.

3.13 ZCAN_ReceiveFD

This function is used to receive CANFD frames, it is recommended to use ZCAN_GetReceiveNum to ensures
that the buffer has data before use this function.
UINT ZCAN ReceiveFD(CHANNEL HANDLE channel handle, ZCAN ReceiveFD Data* pReceive, UINT len, int wait time DEF(-1));
parameter

channel_handle

Channel handle value.

pReceive

The first pointer of the Structure array ZCAN ReceiveFD Data.

len

Array length (maximum number of frames received this time, actual return value is less than or equal to this
value).

wait_time

There is no data in the buffer. The waiting time for function blocking is in milliseconds. If it is -1, it indicates

wait forever. The default value is -1.
return value

Returns the actual number of received frames.

3.14 GetIProperty

This function returns the property configuration interface.

18

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

IProperty* GetIProperty(DEVICE HANDLE device handle);

parameter
device handle
Device handle value.
return value
Returns the pointer to the property configuration interface, see chapter 2.9 for details. If it is empty, it indicates

that the operation has failed.

3.15 ReleaselProperty

Release the property interface and pair it with GetIProperty for use.
UINT ReleaselProperty(IProperty * pIProperty);

parameter

pIProperty

GetlProperty's return value.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.16 ZCAN_SetAbitBaud

This function is used to set the baudrate of the CANFD arbitration domain. When using the attribute
'n/canfd_abit_baud rate' to set baudrate fails, then this function can be called to set the baudrate. For example,
when the development environment is VC, you can call this function interface to set the CANFD arbitration
baudrate.

UINT FUNC CALL ZCAN SetAbitBaud(DEVICE HANDLE device handle, UINT can index, UINT abitbaud):
parameter

device_handle

Device handle value.

can_index

Channel index number, channel 0's index number is 0, channel 1's index number is 1, and so on.

19

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

abitbaud

For the baudrate value of the arbitration domain, see the baudrate value of the arbitration domain in the
Property list.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.17 ZCAN_SetDbitBaud

This function is used to set the baudrate of the CANFD data domain. When using the attribute
'n/canfd_dbit_baud rate' to set baudrate fails, then this function can be called to set the baudrate. For example,

when the development environment is VC, you can call this function interface to set the CANFD date baudrate.

UINT FUNC CALL ZCAN SetDbitBaud(DEVICE HANDLE device handle, UINT can index, UINT dbitbaud);

parameter

device handle

Device handle value.

can_index

Channel index number, channel 0's index number is 0, channel 1's index number is 1, and so on.

dbitbaud

For the baudrate value of the data domain, see the baudrate value of the data domain in the Property list.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.18 ZCAN_SetBaudRateCustom

This function is used to set the CANFD custom baudrate. When using the attribute 'n/baud_rate_custom' to set
the baudrate fails, then this function can be called to set the custom baudrate. For example, when the development
environment is VC, you can call this function interface to set the CANFD custom baudrate.

UINT FUNC_CALL ZCAN SetBaudRateCustom (DEVICE HANDLE device handle, UINT can index, char * RateCustom) ;
parameter

device handle

Device handle value.
20

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

can_index
Channel index number, channel 0's index number is 0, channel 1's index number is 1, and so on.
RateCustom
Custom baudrate string, see Property list Custom baudrate value.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.19 ZCAN_SetCANFDStandard

This function is used to set the CANFD standard type. When using the attribute 'n/canfd_standard' to set the
CANFD standard fails, then this function can be called to set it. If the development environment is VC, this
function interface can be called to set the CANFD standard.

UINT FUNC_CALL ZCAN_SetCANFDStandard (DEVICE HANDLE device handle, UINT can_index, UINT canfd standard) ;
parameter

device_handle

Device handle value.

can_index

Channel index number, channel 0's index number is 0, channel 1's index number is 1, and so on.

canfd_standard

CANFD standard type,0=CANFD ISO, 1=CANFD BOSCH.
return value

STATUS_OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.20 ZCAN_SetResistanceEnable

This function do not use.
3.21 ZCAN_ClearFilter

This function is used to clear channel filtering settings. When using the attribute 'n/filter_clear' to clear filter

fails, then this function can be called. e.g. when the development environment is VC, this function can be called to

21

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

clear the filtering settings. This function is not called separately. Each configuration is carried out in the order of
clearing filter settings, configuration mode, configuration start ID, configuration end ID, and filtering effectiveness;

If you want to set multiple filters, you can set multiple filters between clearing the filter and filtering effectiveness.

UINT FUNC CALL ZCAN ClearFilter (CHANNEL HANDLE channel handle);

parameter
channel_handle
Channel handle value.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.22 ZCAN_SetFilterMode

This function is used to configure the channel filtering mode. This function can be called when using the
attribute 'n/filter_ mode' to set the filter mode fails. e.g. this function can be called when the development
environment is VC. This function is not called separately. Each configuration is carried out in the order of clearing
filter settings, configuration mode, configuration start ID, configuration end ID, and filtering effectiveness; If you
want to set multiple filters, you can set multiple filters between clearing the filter and the filter effectiveness.

UINT FUNC CALL ZCAN SetFilterMode (CHANNEL HANDLE channel handle, UINT mode) ;
parameter

channel_handle

Channel handle value.

mode

mode,0=Standard Frame, 1=Extended Frame.
return value

STATUS_OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.23 ZCAN_SetFilterStartID

This function is used to configure the channel filtering start ID. This function can be called when using the

attribute 'n/filter_start' to set the start ID fails. e.g. this function interface setting can be called when the

22

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

development environment is VC. This function is not called separately. Each configuration is carried out in the
order of clearing filter settings, configuration mode, configuration start ID, configuration end ID, and filtering
effectiveness; If you want to set multiple filters, you can set multiple filters between clearing the filter and the filter
effectiveness.
UINT FUNC CALL ZCAN SetFilterStartID(CHANNEL HANDLE channel handle, UINT startID);
parameter

channel_handle

Channel handle value.

startID

start ID value.
return value

STATUS OK indicates successful operation, STATUS ERR indicates that the operation failed.

3.24 ZCAN_SetFilterEndID

This function is used to configure the channel filtering end ID. This function can be called when using the
attribute 'n/filter_end' to set the end ID fails. e.g. this function interface setting can be called when the development
environment is VC. This function is not called separately. Each configuration is carried out in the order of clearing
filter settings, configuration mode, configuration start ID, configuration end ID, and filtering effectiveness; If you
want to set multiple filters, you can set multiple filters between clearing the filter and the filter effectiveness.

UINT FUNC CALL ZCAN SetFilterEndID(CHANNEL HANDLE channel handle, UINT EndID) ;
parameter

channel_handle

Channel handle value.

EndID

end ID value.
return value

STATUS_OK indicates successful operation, STATUS ERR indicates that the operation failed.

23

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

3.25 ZCAN_AckFilter

This function is used to validate channel filtering settings. This function can be called when the 'n/filter_ack'
setting fails to take effect. e.g. this function interface setting can be called when the development environment is
VC. This function is not called separately. Each configuration is carried out in the order of clearing filter settings,
configuration mode, configuration start ID, configuration end ID, and filtering effectiveness; If you want to set

multiple filters, you can set multiple filters between clearing the filter and the filter effectiveness.

UINT FUNC CALL ZCAN AckFilter (CHANNEL HANDLE channel handle);

parameter
channel _handle
Channel handle value.
return value

STATUS_OK indicates successful operation, STATUS ERR indicates that the operation failed.

24

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

4 Attribute List

The Property list supported by this device is shown in the following table.

parameter Path value
Arbitration domain baudrate n/ canfd abit baud rate 1000000:1Mbps
n Indicates the channel number, O=channel 800000:800kbps
1,1=channel 2 500000:500kbps

250000:250kbps
125000:125kbps
100000:100kbps
50000:50kbps
Note: set before call

ZCAN_InitCAN

date domain baudrate n/ canfd dbit_baud rate 5000000:5Mbps
n Indicates the channel number, O=channel 4000000:4Mbps
1,1=channel 2 2000000:2Mbps

1000000:1Mbps
800000:800kbps
500000:500kbps
250000:250kbps
125000:125kbps
100000:100kbps
Note: set before call
ZCAN_InitCAN

custom baudrate n/baud_rate custom Note: set before call
n Indicates the channel number, O=channel ZCAN_InitCAN
1,1=channel 2
filter mode n/filter_ mode “0”=standard frame
n Indicates the channel number, O=channel “1”=extended frame
1,1=channel 2 Note: set after call ZCAN InitCAN
Filter start frame n/filter_start “0x00000000”, hex char

n Indicates the channel number, O=channel
1,1=channel 2

Note: set after call ZCAN_ InitCAN

Filter end frame n/filter_end “0x00000000”, hex char

n Indicates the channel number, 0=channel

Note:+—setafter call ZCAN InitCAN.

Tt

25

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

1,1=channel 2

Clear filter

n/filter_clear
n Indicates the channel number, O=channel
1,1=channel 2

G‘O’?
Note: set after call ZCAN_ InitCAN

Filter effective

n/filter_ack
n Indicates the channel number, O=channel
1,1=channel 2

660’7
Note: set after call ZCAN_InitCAN

CANFD standard type

n/canfd_standard

n Indicates the channel number, O=channel
1,1=channel 2

“0”=CANFD ISO
“1”=CANFD BOSCH

Note: set before call

26

ZCAN_InitCAN

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

5. Flow of Using API

5.1 Flow

Necessary ops

Optional ops

SEND CAN FRAME

Z2CAN-T Y
LZCTAIN_TTarrstmmt

SEND CANFD
FRAME
ZCAN_TransmitFD

OPEN DEVICE
ZCAN_OpenDevice

A

A

SET BA

GetIProperty->SetValue I,
ZCAN SetAbitBaud\ZCAN SetDbitBaud

UDRATE

A

INIT C
ZCAN_|

HANNEL
nitCAN

START CHANNEL

artCAN

ZCAN-_S.

CLOSE

DEVICE

ZCAN_CloseDevice

27

RESET CHANNEL

ZCAN_ResetCAN

RECV CAN FRAME

ZCAN-R H
LZCTAIN_NTLTIvVT

RECV CANFD
FRAME

ZCAN_ReceiveFD

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

SET FILTER FLOW

Each channel:

Standard frame filtering can

be set up to 64 groups

Extended frame filtering can GetlProperty->SetValue &§,
ZCAN ClearFilter

be set up to 32 groups

CLEAR FILTER

SET FILTER N

SET FILTER 2

SET FILTER MODE

GetlIProperty->SetValue &,
CAN SetFilterMode

SET_FILTER 1

SET FILTER MODE
GetlProperty->SetValue 5%
uwfbou}i Tteriode

SET FILTER MODE
GetlProperty->SetValue B,
ZCAN_SctRg1terMode

SET FILTER START ID

SET FILTER START ID
GetlProperty->SetValue 17

SET FILTER START ID
GetlProperty->SetValue ¥
7ZCAN SetFiyterStartID

GetlProperty->SetValue B,
CAN_Setr i*tcrbtart 1D

+Ster-—HD

SET FILTER END ID
GetlProperty->SetValue ¥

CAN—Se T

SET FILTER END ID

SET FILTER END ID
GetiProperty==Setyatuek GetlProperty->SetValue BY
LCAN i i Do dll
ZCANfSetFFlterEndID EAN—SotFHrorEmd D CAN-SetFitterEndtD
>
A 4

FILTER ACTIVE
GetlProperty->SetValue al

ZCAN_AckFilter

Note: These functions/attributes for
filtering settings need to be called

Tnvokina it alon is
=)

in grouns:
P

meaningless.

28

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

5.2 Sample Code

OPEN DEVICE

m DevType = ZCAN USBCANFD 200U;

m DevIndex=0;

DWORD Reserved=(;

[FT s

m dev = ZCAN OpenDevice (m DevType,m DevIndex,Reserved);
if (INVALID DEVICE HANDLE == m dev)

{

i}

:11ed™) ;

MessageBox("open £
return;

CLOSE DEVICE

/ /A
i1f (STATUS OK '= ZCAN CloseDevice (m dev))
{

MessageBox ("Close failed! ");
return;

}

MessageBox ("Close successful!");

29

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

SET BAUDRATE

IProperty * pPro = GetIProperty(m dev);
const char * str;
if(pPrc == NULL)
{
MessageBox ("Property's NULL!");
return;
¥
/7 EIEEL PR RFEE 500kbps
if(STATUS OK !'= pPro->»SetValue("O/canfd abit baud rate","500000"))
{

MessageBox ("Set ch0 rateA £
ReleaseIProperty(pPro):;
return;

W

iled!l™]) -

}
//BEEEIE] BUR B E 1Mops
if(STATUS OK '= pPro->SetValue("0/canfd dbit baud rate","1000000"))
{
MessageBox ("Set ch(rateD failed!"}):;
ReleaseIProperty(pPro);

return;
}
[/ EIETE2 P S F % 500kbps
if(STATUS OK '= pPro->SetValue("l/canfd abit baud rate","500000"))
{
MessageBox ("Set chl rateA failed!");
ReleaseIProperty(pPro) ;
return;
}
//VEEIRIE2 AR RS 1Mbps
if(STATUS OK '= pPro->SetValue("l/canfd dbit baud rate","10000000"))
{
MessageBox ("Set chl rateD failed!");
ReleaseIProperty(pPro);
return;
}

30

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

SET BAUDRATE 2
[/ EEIEIE]1 PEISEFFE 500kbps
if{(STHTUS_OK = ZCHH_SEtﬁbitBaud{m_dev,ﬁ,EOOODG)
{
MessageBox ("Set ch0 rateA failed!"™);
return;

}
[/ EEIEL #EEIIERRFE 1Mbps
if(STATUS OK I= ZCAM_SetDbitBaud{mndev,n,IHHHHHHJ)
{
MessageBox ("Set ch(0 rateD failed!");
return;

}
[/ EE 2 PERIRUESFE S00kbps
if(STATUS OK I= ZCAN_SetAbitEaud(m_dev,I,-wnwnuj)
{
MessageBox("Set chl rateA failed!"™);
return;

}
[/ BEIE? #FIRIMEERFE 1Mbps
if(STATUS OK != ZCAN SetDbitBaud(m dev,1,1000000))
{
MessageBox ("Set chl rateD failed!");
return;

31

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

SET CHANNEL FILTER [after channel init, before start channel]

//iEFRIEIEL filter
if(STATUS OK != pPro->5etValue("0/filter clear","0"))
{
MessageBox ("clear ch0 fil
ReleaseIProperty(pPro);
return;

ter failed!");

}
//VEEIEIEL filter HIzN: ARkl g
if(STATUS OK != pPro->SetValue("0/filter mode","0"}))
{
MessageBox ("set ch0 filter mode failed!");
ReleaseIProperty(_pPro):
return;
}
//VE ML filter dR4fiID: 0x100
if(STATUS OK != _pPro->S5etValue("0/filter start","0x000100"))
{
MessageBox ("get ch0 filter start failed!");
ReleaseIProperty(pPro);
return;
}
//VE ML filter &59ID: 0x200
if (STATUS_OK != pPro=->SetValue("0/filter end","0x000200"))
{
MessageBox ("set ch0 filter end failed!");:;
ReleaselProperty(pPro);
return;
}
//HERGEIEL filter
if(STATUS OK !'= pPro->SetValue("0/filter ack","0"))
{
MessageBox("set ch0 filter ack failed!"):;
ReleaseIProperty(pPro);
return;

32

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

SET CHANNEL FILTER 2 [after channel init, before start channel]

//iERRIEIEL filter
if(STATUS OK !'= ZCAN_ClearFilter(dev_chl))

{
MessageBox("clear chl0 filter failed!"™);
ReleaselProperty(pPro);
return;

}

//REIEIEL filter W IR/EMIEE
if (STATUS OK != ZCAN SetFilterMode(dev_chl,0))

{
MessageBox ("set ch0 filter mode failed!"™);
ReleaselProperty(pPro);
return;

}
// ¥ EIEIE]l filter BI#5ID: 0x100

if(STATUS OK != ZCAN SetFiltersStartiID(dev chl,0x100))
{
MessageBox ("set ch0 filter start failed!");
ReleaseIProperty(pPro);
return;
}

/P BIEIE]1 filter R ID: 0x200
if(STATUS OK != ZCAH_SetFilterEndID{dev_chl,?:;f?))
{

MessageBox ("set ch0 filter end failed!");
ReleaselProperty(pPro);
return;

}
//ERCEIEL filter
if(STATUS OK != ZCAN AckFilter(dev chl))

{
MessageBox ("set ch0 filter ack failed!");
ReleaselProperty(pPro);
return;

}

33

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

INIT AND START CHANNEL

ZCEN_CHENNEL_INIT_CONFIG cig;

memset (&cfg, 0, sizeof(cfqg)):;
cfg.can_type = TYPE CANFD; // FDi%#
cfg.canfd.mode = 0; //IEEE
cfg.canfd.filter = 0;

cfg.canfd.pad = 0;
cfg.canfd.brp = 0;
//cfg.canfd.abit t
//cfg.canfd.dbit ti
cfg.canfd.acc code = 0;
cfg.canfd.acc mask = OxIffffffff;
cfg.canfd.reserved = ;

/ /WG ETE L
dev_chl = ZCAN InitCAN(m dev,(, &cfqg);
if (INVALID CHANNEL HANDLE == dev chl)
{
MessageBox ("Init-CANO failed!"™);
ReleaseIProperty(pPro):;

return;
} * = r
//JRB)IEIEL
if (STATUS ERR == ZCAN StartCAN(dev chl))
{
MessageBox ("Start-CANO failed!™);
ReleaseIProperty(pPro);
return;
}

34

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

SEND FRAME

/ /1A 3E 1 35 CANI
ZCAN Transmit Data can data;
can data.frame.can id = MAKE CAN ID(0Ox100, 0, O, 0);
can _data.frame.can dlc = §;
for(i=0U;i<can data.frame.can dlc;i++)
can data.frame.data[i]=i;
can data.transmit type = 0; //I1E% KiX

if(1 '= ZCAN Transmit(dev chl, &can data, 1})
{

MessageBox ("send failed\n");

return;

}

/ / [R]iEIE 1/ i% CANFDIW
ZCAN TransmitFD Data canfd data;
canfd data.frame.can id = MAKE CAN ID(0Ox200, O, O, 0);
canfd data.frame.len = 64;
for(i=0;i<canfd data.frame.len;i++)
canfd data.frame.data[i]=i;
canfd data.transmit type = 0; //IF% Ki%

if(L '= ZCAN TransmitFD(dev_chl, &canfd data, 1))

{
MessageBox {"sendFD failed\n");
return;
}
RECV FRAME
ZCAN Receive Data pCanCbjO[2500] ;
ZCAN ReceiveFD Data pCanObjFDO[2500];

/ /ARIBOGE TE 142 p X CANH LR H
can0 num=ZCAN GetReceiveNum(dev chl,0);
if (can0_num)
{
UINT ReadLen=(;
/7 T A2 v X A B IR I
ReadLen = ZCAN Receive(dev_chl, pCanObj0, can0 num, 50);
RV_CANO NUMS += ReadLen;
can0 num = 0;
dlg->SetDlgItemInt (IDC_RECV_NUM, RV _CAN(O NUMS, TRUE) :
}

/ /3RIETE 1452 v X CANFDAR SC B H
can0fd num=ZCAN GetReceiveNum(dev chl,l);
if (can0Ofd num)
{
UINT ReadLen=0;
/ 7 W A 25 X A B I 12)
ReadLen = ZCAN ReceiveFD(dev_chl, pCanObjFD0, can0Ofd num, 50);
RV_CANFDO NUMS += ReadLlen;
can0fd num = 0;
dlg->SetDlgItemInt (IDC RECVFD NUM, RV _CANFDO NUMS, TRUE) ;

35

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

6. Compatible with ZL.G ControlCAN.dll API Library Manual

If this device uses standard CAN, it is compatible with ZLG CANtest and CANPro protocol analysis software.
This chapter provides an overview of its data structure and function. For detailed instructions on how to use
CANtest software and CANPro software, please refer to the analyzer materials 'How to Compatible with the Use of
Zhou Ligong CANTest Software' and 'How to Compatible with the Use of Zhou Ligong CANPro Protocol Analysis
Platform V1.50.pdf. To use the ControlCAN.dll, ControlCAN.lib, and ControlCAN.h files mentioned in the

document, simply replace the relevant files provided by this driver library with the corresponding file names.

6.1 Data Structure Definition

6.1.1 VCI_BOARD_INFO

The structure VCI_BOARD INFO contains the device information of the USB-CAN series interface card.
The structure will be in filled in VCI_ReadBoardInfo function.

itypedef struct VCI BOARD INFO{
USHORT hw_Version;
USHORT fw Version;
USHORT dr_Version;
USHORT in_Version;
USHORT irg Num;

BYTE can_Num;
CHAR str Serial Num[20];
CHAR str hw Typel[40];

USHORT Reserved[4]:
-} VCI_BOARD INFO,*PVCI BOARD INFO;

member
hw_Version
Hardware version number, represented in hexadecimal. For example, 0x0100 represents V1.00.
fw_Version
The firmware version number, represented in hexadecimal. For example, 0x0100 represents V1.00.
dr_Version
Driver version number, represented in hexadecimal. For example, 0x0100 represents V1.00.

in_Version

36

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

The version number of the interface library, expressed in hexadecimal. For example, 0x0100 represents V1.00
irq_ Num

Retention parameter.

can_Num

Indicates how many CAN channels there are.

str_Serial Num

The serial number of this board.

str_hw_Type

Hardware type, such as' USBCANFDO0002 '(note: includes string terminator \0").

Reserved

Reserved.

6.1.2 VCI_CAN_OBJ

The structure VCI_ CAN_OBJ is CAN frame structure. One structure represents the data structure of one frame.

In send function VCI Transmit and Receive Function VCI_Receive, it is used to transmit CAN frames.

typedef struct VCI CAN OBJ{

UINT ID;
UINT TimeStamp;
BYTE TimeFlag;

BYTE SendType;
BYTE RemoteFlaqg;

BYTE ExternFlag;

EYTE Datalen:

BYTE Data[Z];

BYTE Reserved[];
}VCI _CAN OBJ,*PVCI CAN OBJ;
member

ID

Frame ID. 32-bit variable, right aligned.
TimeStamp

The time identifier of a frame received by the device. The time indicator starts counting from the device being
37

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

powered on, with a timing unit of 0.1ms.

TimeFlag

It indicates a the timestamp used or not. When it is 1, TimeStamp is valid. TimeFlag and TimeStamp are only
meaningful when the frame is a received frame.

SendType

Send type.

=0 indicates normal transmission (if the transmission fails, it will automatically resend for 4 seconds, and if it
is not sent within 4 seconds, it will be cancelled);

= 1 indicates single transmission (only once, if the transmission fails, it will not be automatically resend, and
the bus only generates one frame of data);

Other values invalid.

RemoteFlag

=0 indicates the data frame; =1 indicates the remote frame (data segment is empty).

ExternFlag

=0 indicates standard frame(11 bits ID), =1 indicates extended frame(29 bits ID).

DataLen

The data length, DLC (<=8) refers to the number of bytes in the CAN frame Data. Constrained the valid bytes
in Data[8].

Data|8]

CAN frame data. Due to the CAN specification of a maximum of 8 bytes, a space of 8 bytes is reserved here,
subject to Datal.en constraints. If DatalLen is defined as 3, that is, Data [0], Data [1], and Data [2] are valid.

Reserved

Reserved.

6.1.3 VCI_INIT_CONFIG

The structure VCI_INIT_CONFIG defines the configuration of CAN. The structure will be filled in function

VCI_InitCan. Before call VCI_InitCan , init this structure.

38

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

ltypedef struct INIT CONFIG{
DWORD AccCode;
DWORD AccMask;
DWORD Reserved;
UCHAR Filter;
UCHAR TimingO0;
UCHAR Timingl;
UCHAR Mode ;
-}VCI INIT CONFIG,*PVCI INIT CONFIG;

member

AccCode

Acceptance code. Frame filtering acceptance code for SJA1000. After filtering the masked code into "relevant
bits" for matching, once all matches are successful, this frame can be received. Otherwise, it will not be accepted.
Can be set to 0.

AccMask

Block code. Filter the received CAN frame ID using a frame filtering mask code for SJA1000. Use a
corresponding bit of 0 for the 'relevant bit' and a corresponding bit of 1 for the 'irrelevant bit'. It is recommended to
set the blocking code to OXFFFFFF to receive all frames. The blocking code can also be set to 0.

Reserved

Reserved.

Filter

Not used for this device.

Timing0

This device sets the baudrate to use VCI_SetReference interface.

Timing1

This device sets the baudrate to use VCI_SetReference interface.

Mode

mode

=0 represents normal mode (equivalent to a normal node),=1 represents listening mode (only receiving

without affecting the bus), and=2 represents spontaneous self collection mode (loopback mode).

39

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

6.2 API illustrate

6.2.1 VCI_OpenDevice

This function is used to open the device. Note that one device can only be opened once.

DWORD _ stdcall VCI OpenDevice (DWORD DeviceType,DWORD DevicelInd,DWORD Reserved) ;
parameter
DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

The device index number is assigned based on the order of insertion. For instance, if there is only one
USBCANFD adapter, its index number is 0. When another USBCANFD adapter is inserted, the device index
number assigned to it will be 1, and so on.

Reserved

Reserved parameter, usually.
return value

Return 1 indicates success and 0 failed.
example

tinclude "CeontrolCan.h™

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; /* B1RE </
int nCANInd = 0; /* FLAGEIE */
DWORD dwRel;
dwRel = VCI OpenDevice(nDeviceType, nDeviceInd, 0);
if(dwRel != 1)
1
MessageBox (_T ("FI FREFXEM!"), _T("ES"), MB_OK|MB_ICONQUESTION) ;

return FALSE;
B}

6.2.2 VCI_CloseDevice

This function is used to close the device.

DWORD _ stdcall VCI CloseDevice (DWORD DeviceType, DWORD Devicelnd) ;

parameter

40

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.
return value

Return 1 indicates success and 0 failed.
example

$include "ControlCan.h™

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; /* BliEE
int nCANInd = 0; /* BE14-iEIE */

DWORD dwRel;
dwRel = VCI_CloseDevice (nDeviceType, nDevicelnd) ;
if(dwRel = 1)

I
MessageBox (T ("< MHiz&K<M "y, T("ES"), MB OK|MB ICONQUESTION) ;

return FALSE;
-}

6.2.3 VCIL_InitCAN

This function is used to initialize the specified CAN channel. When there are multiple CAN channels, multiple
calls are required.
DWORD _ stdcall VCI_InitCAN(DWORD DeviceType, DWORD DeviceInd, DWORD CANInd, PVCI INIT CONFIG pInitConfig);
parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with

CANI being 0 and CAN2 being 1.

41

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

pInitConfig

Initialize parameter structure.
return value

Return 1 indicates success and 0 failed.
example

#include "ControlCan.h"

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; /* EB1PTRE </
int nCANInd = 0; /* E14EIE +/

DWORD dwRel;

VCI_INIT CONFIG vic;

dwRel = VCI_OpenDevice (nDeviceType, nDevicelnd, 0);

if(dwRel = 1)

I{
MessageBox (_T ("I HiR&5=M "), T("&S"), MB_OK|MB_ICONQUESTION) ;
return FALSE;

}

Viec.AccCode=0;

vic.AccMask=0;

vic.Filters=(;

vic.TimingO=0;

vic.Timingl=0;

vic.Mode=(;

dwRel = VCI InitCAN(nDeviceType, nDeviceInd, nCANInd, &vic);
if (dwRel !=1)

4

VCI CloseDevice(nDeviceTypes, nDevicelInd);
MessageBox (T ("#451L 1= &ML
return FALSE;

), MB OK|MB ICONQUESTION) ;

6.2.4 VCI_ReadBoardInfo

This function is used to obtain device information.
DWORD _ stdcall VCI ReadBoardInfo(DWORD DeviceType,DWORD DevicelInd,PVCI BOARD INFO pInfo);
parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

plInfo
42

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

The structure pointer of VCI_BOARD_ INFO used to store device information.
return value
Return 1 indicates success and 0 failed.

example

#include "ControlCan.h"

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; /* 1A ¢/
int nCANInd = 0; /* FB1GGEIE </

DWORD dwRel;

dwRel = VCI ReadBoardInfo(nDeviceType, nDeviceInd, &vbi);
if (dwRel != 1)
'_'|{

MessageBox (T ("%
return FALSE;

Wrimy, T("ES"), MB OK|MB_ ICONQUESTION) ;

6.2.5 VCI_GetReceiveNum

This function retrieves the number of frames that have been received but not yet read in the receive buffer of
the specified CAN channel. Its main purpose is to work in conjunction with VCI_Receive, which assumes that the
buffer contains data before it is received.

In practical applications, users can improve program efficiency by directly looping calls to VCI_Receive and

ignoring this function, thereby saving PC system resources.

ULONG stdcall VCI GetReceiveNum(DWORD DeviceType,DWORD DevicelInd,DWORD CANInd) ;

parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with
CAN1 being 0 and CAN2 being 1.
return value

Returns the number of frames that have not been read yet,=-1 indicates that the USBCANFD device does not

43

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

exist or the USB is disconnected.

example

#include “"ControlCan.h"

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; J* B1TRE £/
int nCANInd = 0; /* FB1EIE */

DWORD dwRel;
dwRel = VCI GetReceiveNum (nDeviceType, nDeviceInd, nCANInd) ;

6.2.6 VCI_ClearBuffer

This function is used to clear the buffer of the specified CAN channel. Mainly used in situations where
receiving buffer data needs to be cleared, and sending buffer data will also be cleared.
DWORD stdcall VCI ClearBuffer (DWORD DeviceType,DWORD DeviceInd,DWORD CANInd) ;
parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with
CANI being 0 and CAN2 being 1.
return value

Return 1 indicates success and 0 failed.

example

$tinclude "ControlCan.h"

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; /* B1NIEE </
int nCANInd = 0; /* BE1-EIE */

DWORD dwRel ;
dwRel = VCI_ClearBuffer(nDeviceType, nDevicelnd, nCANInd) ;

44

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

6.2.7 VCI_StartCAN

This function is used to activate a CAN channel of the CAN card. When there are multiple CAN channels,

multiple calls are required.

DWORD _ stdcall VCI_ StartCAN(DWORD DeviceType,DWORD Devicelnd,DWORD CANInd) ;
parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with
CANI being 0 and CAN2 being 1.
return value

Return 1 indicates success and 0 failed.

example
#include "ControlCan.h"
int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; [* B11wE */
int nCANInd = 0; /* FE1AGEIE */

DWORD dwRel;
VCI INIT CONFIG vic;

if(VCI_OpenDevice (nDeviceType, nDevicelInd, 0) != 1)
A |
MessageBox (T("#TFiE&EHRM ")y, T("ZE%F"), MB OK|MB ICONQUESTICN) ;
return FALSE;
-}
if(VCI_InitCAN(nDeviceType, nDeviceInd, nCANInd, &vic) != 1)
=1
VCI_CloseDevice (nDeviceType, nDevicelInd) ;
MessageBox (_ T("#Ii5{hiz& =M™y, T("&5"), MB_OK|MB_ICONQUESTION) ;
return FALSE;
=3
if(VCI_StartCAN(nDeviceType, nDevicelInd, nCANInd) !=1)
=
VCI_CloseDevice (nDeviceType, nDevicelInd) ;
MessageBox(T("EZwESRM!"), T("EE"), MB_OK|MB_ ICONQUESTION) ;
return FALSE;
=3

45

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

6.2.8 VCI_ResetCAN

This function is used to reset CAN. Mainly used in conjunction with VCI_StartCAN, the normal state of the
CAN card can be restored without further initialization. For example, when the CAN card enters the bus off state,

this function can be called.

DWORD _ stdcall VCI ResetCAN(DWORD DeviceType,DWORD Devicelnd,DWORD CANInd) ;

parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with
CAN1 being 0 and CAN2 being 1.
return value

Return 1 indicates success and 0 failed.
example

#include "ControlCan.h"™

int nDeviceType = £41; /*
int nDheviceInd = 0; i
int nCANInd = 0; ke

DWORD dwRel;
dwRel = VCI_ ResetCAN(nDeviceType, nDeviceInd, nCANInd) ;
if (dwRel != 1)

=

MessageBox (_T(“_?' Fo<mEI™y ,
return FALSE;

[
“P::
il

'), MB OE|MB ICONQUESTION) ;

6.2.9 VCI_Transmit

Send function. The return value is the actual number of frames successfully sent.

ULONG _ stdcall VCI Transmit (DWORD DeviceType,DWORD DeviceInd,DWORD CANInd,PVCI CAN OBJ pSend,DWORD Length) ;

46

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another

USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with

CANI being 0 and CAN2 being 1.

pSend

The first pointer of structure array VCI_CAN_OBIJ to be sent.

Length

The length of the frame structure array to be sent (the number of frames sent). The maximum is 1000, it is

recommended to set it to 1 and send a single frame each time to improve transmission efficiency.

return value

Returns the actual number of frames sent,=-1 indicates that the USBCANFD device does not exist or the USB

is disconnected.
example

finclude "ControlCan.h"
int nDeviceType = 41;
int nDevicelInd = 0;
int nCANInd = 0; [*
DWORD dwBRel;

VCI_CAN OBJ vcol[48];
for(int i=0;i<48;1i++)

I

veco[i).ID = i;

vco[i] .RemoteFlag = (;
vco[i] .ExternFlag = 0;
veo[i] .Datalen
foxr(int J = 0;3
vco.Datal[j]l = j;

7}

@
F 1
rr

f
i
[A

(i

[
"l II..
(m @~
»

dwRel = VCI Transmit (nDeviceType, nDeviceInd, nCANInd, veco,48);

47

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

6.2.10 VCI_Receive

Receive function. This function reads data from the receive buffer of the specified device CAN channel.
ULONG _ stdcall VCI_Receivs (DWORD DevIype, DWORD DeviIndex, DWORD CANIndex, BVCI_CAN OBJ pReceive, ULONG Len, INT WaitTime) ;|
parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with
CAN1 being 0 and CAN2 being 1.

pReceive

The first pointer of structure array VCI_CAN_OBJ which used for reception frames. Note: The size of the
array must be larger than the len parameter below, otherwise memory read and write errors may occur.

Len

The length of the frame structure array used to receive (the maximum number of frames received this time,
and the actual return value is less than or equal to this value). This value is the size of the provided storage space.
The device has set a receive cache area of around 2000 frames for each channel. Users can choose an appropriate
receive array length between 1 and 2000 based on their own system and working environment requirements.
Generally, the size of the pReceive array and Len are set to be greater than 2000, such as 2500, which can
effectively prevent address conflicts caused by data overflow. Simultaneously call VCI_Receive every 30ms is
appropriate. While meeting the timeliness of the application, try to reduce the frequency of calling VCI_Receive as
much as possible. As long as the internal cache is not overflowed and more frames are read and processed each
time, it can improve operational efficiency.

WaitTime

Retention parameter.
return value

Returns the actual number of frames read,=-1 indicates that the USBCANFD device does not exist or the USB
48

mailto:zhcxgd@163.com

API library (Secondary Development Library) User Manual

is disconnected.

example

$#include "ControlCANFD.h"

int nDeviceType = 41; /* USBCANFD */
int nDeviceInd = 0; /* FB1NEE ¢/
int nCANInd = 0; /* B1-EIE </

DWORD dwRel;

VCI_CAN OBJ veo[2500];
dwRel = VCI Receive(nDeviceType, nDevicelnd, nCANInd, vco,2500,0);
if(1Rel > 1)
I
/* HAAEALIE +/
}
elzse if(lRel == =1)
I{
l.. /* USBCANFDIR & A~ TEfEsiuseiEsk, oI LLiAAIvCI closeDeviceFF EF
VCI OpenDevice. #HNMLT]LLIAZ|USBCANFDIR SHRFHRBIME. =/
}

6.2.11 VCI_SetReference

Attribute setting function, which can be used to set Baud and filter.
DWORD _ stdcall VCI_SetReference (DWORD DeviceType,DWORD DeviceInd,DWORD CANInd,DWORD RefType,PVOID pData);
parameter

DevType

Device type. Please refer to the definition of adapter device type for different product models.

DevIndex

Device index, for example, when there is only one USBCANFD adapter, the index number is 0. If another
USBCANFD adapter is inserted, the device index number inserted later is 1, and so on.

CANIndex

CAN channel index. Which CAN channel is it. The CAN channel number of the corresponding card, with
CANI1 being 0 and CAN2 being 1.

RefType

Attribute types, as shown in the table below.

pData

The data pointer corresponding to the attribute type is shown in the table below.

49

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

Attribute Type RefType pData
Baudrate setting 0 Pointer pointing to the value of the address
(Because it supports the (*(DWORD*)pData) Corresponding relationship
function of ordinary with baudrate setting is as follows:
CAN, here only the 0x060003 : baudrate set to 1Mbps
arbitration domain 0x060004: baudrate set to 800kbps
baudrate of this 0x060007 : baudrate set to 500kbps
CANFD device is set, 0x1C0008: baudrate set to 250kbps
and its data domain 0x1CO0011: baudrate set to 125kbps
baudrate is fixed to 0x160023: baudrate set to 100kbps
1Mbps) 0x1C002C: baudrate set to S0kbps
0x1600B3: baudrate set to 20kbps
0x1COO0EO: baudrate set to 10kbps
0x1CO01CI1: baudrate set to Skbps
Filter setting 1 PData is the pointer which pointing to structure
(The order of filtering VCI_FILTER _RECORD,which is defined as:
settings in this set of typedef struct VCI FILTER RECORD({
interfaces is: 3->1->2. DWORD ExtFrame; /l extended frame or not
RefType is 3 to clear DWORD Start;
filtering, 1 to add DWORD End;
filtering items, and 2 to }VCI FILTER RECORD. *PVCI FILTER RECORD:
start setting. Please | 2 No requirements, can be any value

refer to Chapter 6.3 for
the filtering setting
process)

No requirements, can be any value

50

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

6.3 Flow of Using API

6.3.1 Flow

OPEN DEVICE

Necessary ops, VCI_OpenDevice

___________________ >
Optional ops
\ 4
SET BAUDRATE
VCI_SetReference
e
h 4
INIT CHANNEL
VCI_InitCAN
........... | AR
SET FILTER
T »
h 4
START CHANNEL [~ » RESET CHANNEL
VCI_StartCAN VCI_ResetCAN
SEND CAN FRAME [¢ ™" = M RECV CAN FRAME
\'/F!_Trancmit \'IF!_Rnrni\'/n
h 4

CLOSE DEVICE

(W7 | [H
VII_CIUSTUTVILT

51

mailto:zhcxgd@163.com

APl library (Secondary Development Library) User Manual

6.3.2 Filter Setup Flow

SET CHANNEL FILTER

Each channel:
Standard frame filtering can
be set up to 64 groups

Extended frame filtering can
be set up to 32 groups CLEAR FILTER
VCI_SetReference, RefType=3

v ! |

SET FILTER 1 SET FILTER 2 SET FILTER N

BT PILTER JoDE SET FILTER MODE SET FILTER MODE
VCI_SetReference, VCI_SetReference,
VCI_SetReference, - RefType=1

RefType=1
RefT =1 P

FILTER ACTIVE
VCI_SetReference,
RefType=2

Note: Filter settings need to be called
in groups as shown in the figure;

Invoking it alone is meaningless.

52

mailto:zhcxgd@163.com

